Researches have shown that Raphia hookeri gum could be used as a binder in pharmaceutical formulations and gums in general have been used as emulsifiers in liquid paraffin emulsion but nothing has been heard of Raphia...Researches have shown that Raphia hookeri gum could be used as a binder in pharmaceutical formulations and gums in general have been used as emulsifiers in liquid paraffin emulsion but nothing has been heard of Raphia hookeri in liquid paraffin emulsion as an emulsifier.This work was aimed at evaluating the emulsifying properties of Raphia gum in liquid paraffin emulsion.Two separate preparations containing different concentrations(1,2,3,5 and 10%w/v)of Raphia gum and acacia gum respectively were prepared.Five liquid paraffin emulsions(200 mL each)were also prepared using 60 mL liquid paraffin as the oil phase and 6 g of the various combinations of Raphia gum and Tween 80 as emulsifier blend at ratio 1:5,1:2,1:1,2:1 and 5:1.The preparations were assessed using density,viscosity and stability after 5 days of storage as evaluation parameters.By increasing the concentration of Raphia and Acacia gum,the density of emulsion formed increased.The ranking of the density was 10%>5%>3%>2%>1%.The viscosity of emulsion increased as the concentration of the gum increased.The viscosity which plays a role in the stability of emulsion increased as the concentration of gum increased.The ranking of viscosity was 10%>5%>3%>2%>1%.The stability of the emulsion was measured by the level of creaming and cracking.Emulsion containing 2%w/v of Raphia gum with a creaming index of 23%was more stable compared to the emulsion containing 3%w/v acacia gum with creaming index of 29.9%.The viscosity and stability of emulsion containing emulsifier blends of Raphia and Tween 80 increased with increase in the concentration of Raphia gum.Emulsion containing 3%w/v Raphia gum with no creaming was more stable than emulsion containing 1%w/v emulsifier blend.Raphia gum is suitable for use at a concentration of 2%w/v as an emulsifier in 50 mL of liquid paraffin emulsion competing alternatively to standard acacia gum for emulsification as against Afzelia africana in our previous research which was suitable for use at a concentration of 3%w/v as an emulsifier in 30%v/v liquid paraffin emulsion.展开更多
This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU))....This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.展开更多
Gluten has poor emulsifying and foaming ability due to its amino acid composition. In this study, Maillard reaction was used to improve the emulsifying and foaming properties of gluten. The processing conditions for t...Gluten has poor emulsifying and foaming ability due to its amino acid composition. In this study, Maillard reaction was used to improve the emulsifying and foaming properties of gluten. The processing conditions for the preparation of gluten-fructose conjugates were optimized by using Box-Behnken model to achieve optimum foaming and emulsifying activity, respectively.The results showed that glycated gluten exhibited enhanced emulsifying activity compared to native control. The processing conditions for the preparation of gluten-fructose conjugates with optimum emulsifying activity were as follows: the temperature was 48℃, reaction time was 72 h, and maltose/gluten(W/W) ratio was 125%. Under such condition, the average emulsifying activity was 66.54%, being improved by about 2.5 times compared with that of native control. The Foaming properties of gluten also increased significantly by glycation modification. The optimum conditions of response were as below: the temperature was 48℃, reaction time was 66 h, and maltose/gluten ratio(W/W) was 110%. Under such condition, the average foaming property was 158.57%, and it was three folds higher than that of the control.展开更多
The effects of heat treatment(heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy.Heat treatment from 60to 100℃resulted in an increase in th...The effects of heat treatment(heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy.Heat treatment from 60to 100℃resulted in an increase in their fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying activity index,but decreased the size polydispersity of caseins.In the pH range of 5.5to 7.0,the fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying properties decreased with increased heating pH,but the size polydispersity of caseins increased with increased pH.The relationship between the surface fluorescence intensity and emulsifying activity was also investigated,revealing a correlation coefficient of 0.90.These results suggested that heat treatment could be used to modify the structures and emulsifying properties of caseins by appropriately selecting heating conditions.展开更多
The wet air oxidation(WAO) and catalytic WAO(CWAO) of the high strength emulsifying wastewater containing nonionic surfactants have been investigated in terms of COD and TOC removal. The WAO and homogeneous CWAO proce...The wet air oxidation(WAO) and catalytic WAO(CWAO) of the high strength emulsifying wastewater containing nonionic surfactants have been investigated in terms of COD and TOC removal. The WAO and homogeneous CWAO processes were carried out at the temperature from 433 K to 513 K, with initial oxygen pressure 1 2 MPa. It was found that homogeneous catalyst copper(Cu(NO_3)_2) had an fairly good catalytic activity for the WAO process, and the oxidation was catalyzed when the temperature was higher than 473 K. Moreover, several heterogeneous catalysts were proved to be effective for the WAO process. At the temperature 473 K, after 2 h reaction, WAO process could achieve about 75% COD removal and 66% TOC removal, while catalysts Cu/Al_2O_3 and Mn-Ce/Al_2O_3 elevated the COD removal up to 86%—89% and that of TOC up to 82%. However, complete elimination of COD and TOC was proved to be difficult even the best non-noble catalyst was used. Therefore, the effluent from WAO or CWAO process need to be further disposed. The bioassay proved that the effluent from WAO process was amenable to the biochemical method.展开更多
Gum odina and various parts of the plant Odina wodier are traditionally used in Indian folk me- dicine. Here an effort was made to investigate the efficacy of gum odina as new pharmaceutical excipients, in particular,...Gum odina and various parts of the plant Odina wodier are traditionally used in Indian folk me- dicine. Here an effort was made to investigate the efficacy of gum odina as new pharmaceutical excipients, in particular, as an emulsifying agent. Primary emulsion was prepared using wet gum method taking oil: water: gum (4:2:1) with gum acacia powder as an emulsifying agent. This was used as a standard control formulation. In case of experimental emulsions the primary emulsion was prepared by same wet gum technique taking oil: water: gum (4:2:0.5) (gum content was just a half of gum acacia) by using gum odina powder as an emulsifier. The gum odina as emulsifying agent provided a stable emulsion at a very low concentration as compared to the amount required for other con- ventional natural emulsifying agents. Stability studies of the emulsion were made as per the ICH guideline to study thermal stability, photo- sensitivity, pH related stability and stability in presence of oxygen. The emulsion type was identified by staining techniques (dye test by using Sudan III) as o/w type preparation without creaming or cracking even after long storage for 24 months at 25°C. It was found that the emulsion containing gum odina produced more stable emulsion at a much lower amount as compared to the emulsion stabilized by gum acacia.展开更多
Through determining and evaluating interfacial tension and emulsifying properties of dodecyl polyglucoside (APG-12), the results show that APG-12’s performance is better than C12 linear alkylbenzene sulfonate (LAS) a...Through determining and evaluating interfacial tension and emulsifying properties of dodecyl polyglucoside (APG-12), the results show that APG-12’s performance is better than C12 linear alkylbenzene sulfonate (LAS) and alkyl phenol polyoxyethylene ether (OP-10). In order to emulsify properties of APG-12, it is more stable when concentration is over 1.5 g/L. We studied the temperature and oil-water ratio has an effect on emulsifying property.展开更多
The effects of water-soluble citrus fiber(SCF)and water-insoluble citrus fiber(ICF)on emulsifying properties and molecular structure of the mutton myofibrillar protein(MP)were studied.The emulsifying activity index an...The effects of water-soluble citrus fiber(SCF)and water-insoluble citrus fiber(ICF)on emulsifying properties and molecular structure of the mutton myofibrillar protein(MP)were studied.The emulsifying activity index and emulsifying stability index of MP emulsion,treated with 5%SCF significantly improved to 36.80%and 65.27%,respectively.The droplet size of the emulsion significantly reduced,forming smaller and more uniformly dispersed droplets.SCF promoted the unfolding of MP,and showed a significant increased(p<0.05)in total sulfhydryl content and fluorescence intensity,but a significant decreased(p<0.05)in surface hydrophobicity.Besides,SCF treatment showed a significant reduction(p<0.05)inα-helix content and a significant enhancement(p<0.05)inβ-turn content of the MP secondary structure.The EAI,ESI,and solubility of MP significantly decreased after the addition of ICF,but there was no significant change in the secondary structure.These data demonstrated that,the addition of the appropriate amount of SCF could improve the emulsifying properties and molecular structure of MP.展开更多
The trends of consuming or using eco-friendly,biodegradable products due to the change in the lifestyle of the people have led to the exploration of new sources from plants or animals.Seed mucilage(SeM)is an underexpl...The trends of consuming or using eco-friendly,biodegradable products due to the change in the lifestyle of the people have led to the exploration of new sources from plants or animals.Seed mucilage(SeM)is an underexplored component of plants that can be brought into play to deal with such problems.Mucilage,a viscous polysaccharide that can be obtained when seeds like chia,flax,garden cress,and tomato get hydrated and form a slimy,gel-like substance around the seed coat,can be utilized due to its unique characteristics.It has been used in developing many products such as bio-based films,plant-based dressing wounds with antibacterial effects,a medium for oral drug delivery,edible coatings,etc.Primarily composed of soluble fiber,it exhibits effects on human health,including blood glucose management,cholesterol,weight reduction,antioxidant(AOx),and antimicrobial activity.It offers a range of functional properties,including emulsification,stabilization,foam formation,fat replacement,encapsulating agent,flocculation,coagulation,and medium for drug release.These attributes make SeM a suitable component for applications in various sectors like food and pharmacy.Further study in this field may open more opportunities to address environmental problems and contribute to sustainability.This review explores aspects of SeM,emphasizing its functional properties and highlighting its current as well as potential applications across various sectors.展开更多
The Makran Sea is a complex marine environment.The purpose of this research is screening of emulsifier-producing bacteria in this marine environment and optimization of emulsifier production by the best-producing stra...The Makran Sea is a complex marine environment.The purpose of this research is screening of emulsifier-producing bacteria in this marine environment and optimization of emulsifier production by the best-producing strain.Marine samples(seawater and sediments)were collected from four different zones in the Makran Sea.The emulsification activity index(E_(24))and Bacterial Ad-hesion To Hydrocarbons(BATH)were used to select the best emulsifier-producing strains.The prevalent strains were identified by PCR.The optimization of the emulsifier production medium by the best strain was done by two-level factorial design.Seventeen emulsifier-producing strains were isolated from sediments and seawater in the Makran Sea.The strains M6,BS-2,and J6 were select-ed between all isolates because they have 83%,91%,and 85%emulsification activity(E_(24))respectively.The results of sequencing confirmed that these three strains(M6,BS-2,and J6)belong to Cobetia marina,Shewanella alga,and Thalassospira permensis re-spectively.Maximum emulsifier production occurred at crude oil concentration(4%,v/v),peptone(2.5 g/L),yeast extract(1.5 g/L),molasses(2%),and at a temperature of 25℃.The results of this research confirmed that the Makran Sea has the potential to reach ro-bust marine bacteria with different biotechnological applications.展开更多
A critical pathway towards enhancing pulp mill biorefineries is to integrate the extraction and utilization of hemicelluloses into the pulping processes.Hence,an industrial pre-extraction strategy for hemicelluloses t...A critical pathway towards enhancing pulp mill biorefineries is to integrate the extraction and utilization of hemicelluloses into the pulping processes.Hence,an industrial pre-extraction strategy for hemicelluloses targeting eucalyptus kraft pulping process was developed.Alkaline solution or pulping white liquor was used to pre-extract hemicelluloses before the actual pulping process.The response surface methodology(RSM)technique was applied to investigate the most suitable conditions to maximize the yield of these hemicelluloses while simultaneously minimizing the damage to pulp yields and properties.Temperature(105 to 155℃),alkali concentration(3%to 8%),sulfidity(20%to 30%)and retention time(19 to 221 min)were combined to evaluate their effects on hemicellulose yields and chemical structures.The optimal pre-extraction conditions identified in this work(5.75%NaOH concentration,25%sulfidity at 135℃for 60 min)successfully allowed recovering 4.8%of hemicelluloses(based on the wood dry mass)and limited damages to pulp yields and properties.The cellulose content in pulp can even be increased by about 10%.Hemicellulose emulsification properties were also evaluated,which were comparable to synthetic emulsifiers.This study provides an industrial pathway to effectively separate and utilize wood hemicelluloses from the pulping process,which has the potential to improve the economy and material utilization of pulp and paper mills.展开更多
Fluid shortening is an important ingredient in the production of sponge cake. Peanut oil with 0, 43% and 85% of diacylglycerol content was used as the base oil. Different emulsifiers, such as glycerol monostearate, so...Fluid shortening is an important ingredient in the production of sponge cake. Peanut oil with 0, 43% and 85% of diacylglycerol content was used as the base oil. Different emulsifiers, such as glycerol monostearate, soy lecithin and sucrose ester, and their respective amounts, were investigated. It was found that the addition of emulsifiers had a positive effect on water-absorbing capacity, air-absorbing capacity and viscosity of the oils. Glycerol monostearate was the preferred emulsifier for fluid shortening with a recommended addition of 1.5%. The effects of different diacylglycerol content on fluid shortening and their impact on sponge cake production was also investigated. The onset oxidation temperature of the oil could be increased from 253.21 ℃ for PO-TAG-based fluid shortening to 263.70 ℃ for PO-DAG85-based fluid shortening. And the increase in diacylglycerol content leading to a lower specific gravity of the batter, which was 1.06 g/mL, 1.02 g/mL and 0.98 g/mL prepared by PO-DAG, PO-DAG43 and PO-DAG85 shortening, respectively. The results showed that diacylglycerols can be used as base oils in fluid shortening to improve the crystal network and stability of fluid shortenings, thereby reducing the specific gravity of the batter and improving the structural properties of the cake. This will extend the potential applications of diacylglycerols and increase the variety of base oils available for fluid shortening preparation.展开更多
Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the ...Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the core of dietary fiber, emerges as a versatile compound with multifaceted functionalities. Its nutritional significance,coupled with its role in cereal food processing, has prompted a surge of studies focusing on the valorization of wheat bran AX. Moreover, the hydrolyzed derivative, arabinoxylan oligosaccharides(AXOS), demonstrates prebiotic and antioxidant properties, offering potential avenues to mitigate the risk of chronic diseases. This review summarizes current knowledge on the valorization of wheat bran AX in terms of the processing and nutritional properties of AX. Moreover, multiple novel applications of AX in the materials area, including biodegradable food packaging films, delivery of bioactive substances as nanoparticles, and the manufacture of food emulsifiers, are also highlighted to extend the utilization of AX. This review underscores the immense potential of wheat bran AX, advocating for its exploitation not only as a nutritional asset but also as a primary ingredient in advanced materials. The synthesis of nutritional and materials perspectives accentuates the multifaceted utility of wheat bran AX, thereby paving the way for sustainable valorization pathways. By unraveling the latent potential within AX, this paper advocates for the holistic and sustainable utilization of wheat bran in diverse, value-added applications.展开更多
BACKGROUND Esophageal perforation or postoperative leak after esophageal surgery remain a life-threatening condition.The optimal management strategy is still unclear.AIM To determine clinical outcomes and complication...BACKGROUND Esophageal perforation or postoperative leak after esophageal surgery remain a life-threatening condition.The optimal management strategy is still unclear.AIM To determine clinical outcomes and complications of our 15-year experience in the multidisciplinary management of esophageal perforations and anastomotic leaks.METHODS A retrospective single-center observational study was performed on 60 patients admitted at our department for esophageal perforations or treated for an anastomotic leak developed after esophageal surgery from January 2008 to December 2023.Clinical outcomes were analyzed,and complications were evaluated to investigate the efficacy and safety of our multidisciplinary management based on the preservation of the native or reconstructed esophagus,when feasible.RESULTS Among the whole series of 60 patients,an urgent surgery was required in 8 cases due to a septic state.Fifty-six patients were managed by endoscopic or hybrid treatments,obtaining the resolution of the esophageal leak/perforation without removal of the native or reconstructed esophagus.The mean time to resolution was 54.95±52.64 days,with a median of 35.5 days.No severe complications were recorded.Ten patients out of 56(17.9%)developed pneumonia that was treated by specific antibiotic therapy,and in 6 cases(10.7%)an atrial fibrillation was recorded.Seven patients(12.5%)developed a stricture within 12 months,requiring one or two endoscopic pneumatic dilations to solve the problem.Mortality was 1.7%.CONCLUSION A proper multidisciplinary approach with the choice of the most appropriate treatment can be the key for success in managing esophageal leaks or perforations and preserving the esophagus.展开更多
With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesosco...With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesoscopic dissipative particle dynamics method is used to study themechanism of the crystallization and deposition adsorbed on thewall.The results show that in the absence of water molecules,the paraffin molecules near the substrate are deposited on themetallic surface with a horizontalmorphology,while the paraffin molecules close to the fluid side are arranged in a vertical column morphology.In the emulsified system,more water molecules will be absorbed on the metallic substrate than paraffin molecules,which obstructed the direct interaction between paraffin molecules and solid surface.Therefore,the addition of watermolecules hinders the crystallization of wax near the substrate.Perversely,on the fluid side,water molecules promote the formation of paraffin crystallization.The research in this paper reveals the crystallization mechanism of paraffin wax in oil-water emulsions in the pipeline from the microscopic scale,which provides theoretical support for improving the recovery of wax-containing crude oil and enhancing the transport efficiency.展开更多
[Objective] The properties of butachlor microemulsion were studied for developing a new formulation of new pesticides.[Method]AT method was used to determine the pseudo-ternary phase diagram to confirm the formulation...[Objective] The properties of butachlor microemulsion were studied for developing a new formulation of new pesticides.[Method]AT method was used to determine the pseudo-ternary phase diagram to confirm the formulation of butachlor microemulsion.Through the measurement of electrical conductivity,the W/O and O/W types in microemulsion region of butachlor/emulsifier/water system were confirmed and the change of phase behavior during preparation process was discussed.[Result]The dilution stability,low temperature stability,heat stability,ageing stability,density and viscosity etc.of butachlor microemulsion met the requirement of the experiments,which demonstrated the qualified quality of butachlor.The density decreased linearly with the increase of temperature and the change of viscosity with temperature conformed to Andrade equation.[Conclusion]The research was helpful to the application of butachlor microemulsion in pesticide formulation.展开更多
In this study,various nonionic surfactants(NS) with different ethylene oxide(EO) numbers and tail lengths and its binary blends with anionic surfactants(AS) were used as emulsifiers for naphthenic oil to form the micr...In this study,various nonionic surfactants(NS) with different ethylene oxide(EO) numbers and tail lengths and its binary blends with anionic surfactants(AS) were used as emulsifiers for naphthenic oil to form the microemulsion metalworking fluids(MWFs),and the effects of them on the stability of the emulsion system were investigated by formulation triangle method.The results indicated that binary complex surfactants of NS and AS as emulsifiers exhibited better emulsifying effect than that of single NS.NS with different EO numbers and tail lengths presented various emulsifying effects.NS(EO=10)exhibited the greatest number of stable formulations,especially the TX-10,but no linear relationship existed between the number of stable formulations and the tail length of NS.In addition,aromatic primary alcohol ethoxy late(APAE) series surfactants containing benzene groups similar to the cycloalkanes in the naphthenic oil so that presented the best emulsifying affect and the greatest number of stable formulations.The co-surfactant of sodium dodecyl benzene sulfonate(SDBS) binary blends with NS exerted the best synergistic effect,and the stable formulations numbers were ranged from 5 to 7,next sodium stearate(SS) comes last followed by sodium dodecyl sulfate(SDS-1) and sodium dodecyl sulfonate(SDS-2).展开更多
An alternative polymeric surfactant P(M3/St) was synthesized by solution polymerization of maleamic acid as hydrophilic monomer and styrene as hydrophobic monomer. Some factors that affect the yield and properties o...An alternative polymeric surfactant P(M3/St) was synthesized by solution polymerization of maleamic acid as hydrophilic monomer and styrene as hydrophobic monomer. Some factors that affect the yield and properties of the polymeric surfactant were investigated systemically. The surface tension of the polymeric surfactant reaches 37-38 mN/m. It is proved that the polymeric surfactant shows very good surface activity and emulsifying ability. The TG analysis shows that the temperature of the thermal degradation can reach 314.4 ℃. It will be used as a new type of polymeric surfactant.展开更多
Various degrees of palmitoylated konjac glucomannan (PKGM) are prepared by heterogeneous method. Differential thermal analysis (DTA) thermographs show PKGM having certain degree of substitution (DS) gave a new crystal...Various degrees of palmitoylated konjac glucomannan (PKGM) are prepared by heterogeneous method. Differential thermal analysis (DTA) thermographs show PKGM having certain degree of substitution (DS) gave a new crystalline peak at higher temperature. And PKGM having higher DS only shows the new crystalline state. Furthermore, the effect of the DS of PKGM on its emulsifying ability has been investigated in the water in oil(w/o) and oil in water(o/w) systems. It is demonstrated that it is a kind of good w/o emulsifier with the DS ranged between 1.00 and 1.70; Whereas for DS<0.50, It is a kind of good o/w emulsifier and an interesting phenomenon appears in o/w system. And the half time of emulsion turbidity is more than 1.5 h with PKGM having 2.72 of DS used as the emulsifier.展开更多
文摘Researches have shown that Raphia hookeri gum could be used as a binder in pharmaceutical formulations and gums in general have been used as emulsifiers in liquid paraffin emulsion but nothing has been heard of Raphia hookeri in liquid paraffin emulsion as an emulsifier.This work was aimed at evaluating the emulsifying properties of Raphia gum in liquid paraffin emulsion.Two separate preparations containing different concentrations(1,2,3,5 and 10%w/v)of Raphia gum and acacia gum respectively were prepared.Five liquid paraffin emulsions(200 mL each)were also prepared using 60 mL liquid paraffin as the oil phase and 6 g of the various combinations of Raphia gum and Tween 80 as emulsifier blend at ratio 1:5,1:2,1:1,2:1 and 5:1.The preparations were assessed using density,viscosity and stability after 5 days of storage as evaluation parameters.By increasing the concentration of Raphia and Acacia gum,the density of emulsion formed increased.The ranking of the density was 10%>5%>3%>2%>1%.The viscosity of emulsion increased as the concentration of the gum increased.The viscosity which plays a role in the stability of emulsion increased as the concentration of gum increased.The ranking of viscosity was 10%>5%>3%>2%>1%.The stability of the emulsion was measured by the level of creaming and cracking.Emulsion containing 2%w/v of Raphia gum with a creaming index of 23%was more stable compared to the emulsion containing 3%w/v acacia gum with creaming index of 29.9%.The viscosity and stability of emulsion containing emulsifier blends of Raphia and Tween 80 increased with increase in the concentration of Raphia gum.Emulsion containing 3%w/v Raphia gum with no creaming was more stable than emulsion containing 1%w/v emulsifier blend.Raphia gum is suitable for use at a concentration of 2%w/v as an emulsifier in 50 mL of liquid paraffin emulsion competing alternatively to standard acacia gum for emulsification as against Afzelia africana in our previous research which was suitable for use at a concentration of 3%w/v as an emulsifier in 30%v/v liquid paraffin emulsion.
基金financially supported by grants from the Key Scientific Research Projects of Hubei Province(2020BCA086)the National Key Research and Development Program of China(2017YFD0400200)+3 种基金Wuhan Application Fundamental Frontier Project of China(2020020601012270)the National Natural Science Foundation of China(31771938)the China Agriculture Research System of MOF and MARAthe Wuhan Achievement Transformation Project(2019030703011505)。
文摘This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.
基金Supported by Natural Science Project of Department of Science&Technology of Henan Province(172102110009,162102210194)The open fund of Provincal Key Laboratory for Transformation and Utilization of Cereal Resource of Henan University of Technology(PL2017010)
文摘Gluten has poor emulsifying and foaming ability due to its amino acid composition. In this study, Maillard reaction was used to improve the emulsifying and foaming properties of gluten. The processing conditions for the preparation of gluten-fructose conjugates were optimized by using Box-Behnken model to achieve optimum foaming and emulsifying activity, respectively.The results showed that glycated gluten exhibited enhanced emulsifying activity compared to native control. The processing conditions for the preparation of gluten-fructose conjugates with optimum emulsifying activity were as follows: the temperature was 48℃, reaction time was 72 h, and maltose/gluten(W/W) ratio was 125%. Under such condition, the average emulsifying activity was 66.54%, being improved by about 2.5 times compared with that of native control. The Foaming properties of gluten also increased significantly by glycation modification. The optimum conditions of response were as below: the temperature was 48℃, reaction time was 66 h, and maltose/gluten ratio(W/W) was 110%. Under such condition, the average foaming property was 158.57%, and it was three folds higher than that of the control.
基金International Science&Technology Cooperation Program of China(2011DFA32550)Ministry of Science and Technology of China(2012BAD12B08)
文摘The effects of heat treatment(heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy.Heat treatment from 60to 100℃resulted in an increase in their fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying activity index,but decreased the size polydispersity of caseins.In the pH range of 5.5to 7.0,the fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying properties decreased with increased heating pH,but the size polydispersity of caseins increased with increased pH.The relationship between the surface fluorescence intensity and emulsifying activity was also investigated,revealing a correlation coefficient of 0.90.These results suggested that heat treatment could be used to modify the structures and emulsifying properties of caseins by appropriately selecting heating conditions.
文摘The wet air oxidation(WAO) and catalytic WAO(CWAO) of the high strength emulsifying wastewater containing nonionic surfactants have been investigated in terms of COD and TOC removal. The WAO and homogeneous CWAO processes were carried out at the temperature from 433 K to 513 K, with initial oxygen pressure 1 2 MPa. It was found that homogeneous catalyst copper(Cu(NO_3)_2) had an fairly good catalytic activity for the WAO process, and the oxidation was catalyzed when the temperature was higher than 473 K. Moreover, several heterogeneous catalysts were proved to be effective for the WAO process. At the temperature 473 K, after 2 h reaction, WAO process could achieve about 75% COD removal and 66% TOC removal, while catalysts Cu/Al_2O_3 and Mn-Ce/Al_2O_3 elevated the COD removal up to 86%—89% and that of TOC up to 82%. However, complete elimination of COD and TOC was proved to be difficult even the best non-noble catalyst was used. Therefore, the effluent from WAO or CWAO process need to be further disposed. The bioassay proved that the effluent from WAO process was amenable to the biochemical method.
文摘Gum odina and various parts of the plant Odina wodier are traditionally used in Indian folk me- dicine. Here an effort was made to investigate the efficacy of gum odina as new pharmaceutical excipients, in particular, as an emulsifying agent. Primary emulsion was prepared using wet gum method taking oil: water: gum (4:2:1) with gum acacia powder as an emulsifying agent. This was used as a standard control formulation. In case of experimental emulsions the primary emulsion was prepared by same wet gum technique taking oil: water: gum (4:2:0.5) (gum content was just a half of gum acacia) by using gum odina powder as an emulsifier. The gum odina as emulsifying agent provided a stable emulsion at a very low concentration as compared to the amount required for other con- ventional natural emulsifying agents. Stability studies of the emulsion were made as per the ICH guideline to study thermal stability, photo- sensitivity, pH related stability and stability in presence of oxygen. The emulsion type was identified by staining techniques (dye test by using Sudan III) as o/w type preparation without creaming or cracking even after long storage for 24 months at 25°C. It was found that the emulsion containing gum odina produced more stable emulsion at a much lower amount as compared to the emulsion stabilized by gum acacia.
文摘Through determining and evaluating interfacial tension and emulsifying properties of dodecyl polyglucoside (APG-12), the results show that APG-12’s performance is better than C12 linear alkylbenzene sulfonate (LAS) and alkyl phenol polyoxyethylene ether (OP-10). In order to emulsify properties of APG-12, it is more stable when concentration is over 1.5 g/L. We studied the temperature and oil-water ratio has an effect on emulsifying property.
基金supported by the Fujian Provincial Science and Technology Planning Project(No.2021I1005).
文摘The effects of water-soluble citrus fiber(SCF)and water-insoluble citrus fiber(ICF)on emulsifying properties and molecular structure of the mutton myofibrillar protein(MP)were studied.The emulsifying activity index and emulsifying stability index of MP emulsion,treated with 5%SCF significantly improved to 36.80%and 65.27%,respectively.The droplet size of the emulsion significantly reduced,forming smaller and more uniformly dispersed droplets.SCF promoted the unfolding of MP,and showed a significant increased(p<0.05)in total sulfhydryl content and fluorescence intensity,but a significant decreased(p<0.05)in surface hydrophobicity.Besides,SCF treatment showed a significant reduction(p<0.05)inα-helix content and a significant enhancement(p<0.05)inβ-turn content of the MP secondary structure.The EAI,ESI,and solubility of MP significantly decreased after the addition of ICF,but there was no significant change in the secondary structure.These data demonstrated that,the addition of the appropriate amount of SCF could improve the emulsifying properties and molecular structure of MP.
文摘The trends of consuming or using eco-friendly,biodegradable products due to the change in the lifestyle of the people have led to the exploration of new sources from plants or animals.Seed mucilage(SeM)is an underexplored component of plants that can be brought into play to deal with such problems.Mucilage,a viscous polysaccharide that can be obtained when seeds like chia,flax,garden cress,and tomato get hydrated and form a slimy,gel-like substance around the seed coat,can be utilized due to its unique characteristics.It has been used in developing many products such as bio-based films,plant-based dressing wounds with antibacterial effects,a medium for oral drug delivery,edible coatings,etc.Primarily composed of soluble fiber,it exhibits effects on human health,including blood glucose management,cholesterol,weight reduction,antioxidant(AOx),and antimicrobial activity.It offers a range of functional properties,including emulsification,stabilization,foam formation,fat replacement,encapsulating agent,flocculation,coagulation,and medium for drug release.These attributes make SeM a suitable component for applications in various sectors like food and pharmacy.Further study in this field may open more opportunities to address environmental problems and contribute to sustainability.This review explores aspects of SeM,emphasizing its functional properties and highlighting its current as well as potential applications across various sectors.
基金supported by Shahid Bahonar Universi-ty of Kerman.
文摘The Makran Sea is a complex marine environment.The purpose of this research is screening of emulsifier-producing bacteria in this marine environment and optimization of emulsifier production by the best-producing strain.Marine samples(seawater and sediments)were collected from four different zones in the Makran Sea.The emulsification activity index(E_(24))and Bacterial Ad-hesion To Hydrocarbons(BATH)were used to select the best emulsifier-producing strains.The prevalent strains were identified by PCR.The optimization of the emulsifier production medium by the best strain was done by two-level factorial design.Seventeen emulsifier-producing strains were isolated from sediments and seawater in the Makran Sea.The strains M6,BS-2,and J6 were select-ed between all isolates because they have 83%,91%,and 85%emulsification activity(E_(24))respectively.The results of sequencing confirmed that these three strains(M6,BS-2,and J6)belong to Cobetia marina,Shewanella alga,and Thalassospira permensis re-spectively.Maximum emulsifier production occurred at crude oil concentration(4%,v/v),peptone(2.5 g/L),yeast extract(1.5 g/L),molasses(2%),and at a temperature of 25℃.The results of this research confirmed that the Makran Sea has the potential to reach ro-bust marine bacteria with different biotechnological applications.
基金supported by the Natural Science Foundation of Guangdong Province(2023A1515030211)the National Natural Science Foundation of China(22278157)Guangzhou Science and Technology Program(2023B03J1365).
文摘A critical pathway towards enhancing pulp mill biorefineries is to integrate the extraction and utilization of hemicelluloses into the pulping processes.Hence,an industrial pre-extraction strategy for hemicelluloses targeting eucalyptus kraft pulping process was developed.Alkaline solution or pulping white liquor was used to pre-extract hemicelluloses before the actual pulping process.The response surface methodology(RSM)technique was applied to investigate the most suitable conditions to maximize the yield of these hemicelluloses while simultaneously minimizing the damage to pulp yields and properties.Temperature(105 to 155℃),alkali concentration(3%to 8%),sulfidity(20%to 30%)and retention time(19 to 221 min)were combined to evaluate their effects on hemicellulose yields and chemical structures.The optimal pre-extraction conditions identified in this work(5.75%NaOH concentration,25%sulfidity at 135℃for 60 min)successfully allowed recovering 4.8%of hemicelluloses(based on the wood dry mass)and limited damages to pulp yields and properties.The cellulose content in pulp can even be increased by about 10%.Hemicellulose emulsification properties were also evaluated,which were comparable to synthetic emulsifiers.This study provides an industrial pathway to effectively separate and utilize wood hemicelluloses from the pulping process,which has the potential to improve the economy and material utilization of pulp and paper mills.
基金The Bureau of Science and Information of Guangzhou under grant 2024A04J3254the National Natural Science Foundation of China under grant 32272341the Department of Science and Technology of Guangdong Province under grant numbers 2022B0202010003。
文摘Fluid shortening is an important ingredient in the production of sponge cake. Peanut oil with 0, 43% and 85% of diacylglycerol content was used as the base oil. Different emulsifiers, such as glycerol monostearate, soy lecithin and sucrose ester, and their respective amounts, were investigated. It was found that the addition of emulsifiers had a positive effect on water-absorbing capacity, air-absorbing capacity and viscosity of the oils. Glycerol monostearate was the preferred emulsifier for fluid shortening with a recommended addition of 1.5%. The effects of different diacylglycerol content on fluid shortening and their impact on sponge cake production was also investigated. The onset oxidation temperature of the oil could be increased from 253.21 ℃ for PO-TAG-based fluid shortening to 263.70 ℃ for PO-DAG85-based fluid shortening. And the increase in diacylglycerol content leading to a lower specific gravity of the batter, which was 1.06 g/mL, 1.02 g/mL and 0.98 g/mL prepared by PO-DAG, PO-DAG43 and PO-DAG85 shortening, respectively. The results showed that diacylglycerols can be used as base oils in fluid shortening to improve the crystal network and stability of fluid shortenings, thereby reducing the specific gravity of the batter and improving the structural properties of the cake. This will extend the potential applications of diacylglycerols and increase the variety of base oils available for fluid shortening preparation.
基金supported by the National Key Research and Development Plan Project (2022YFD2301401)Young Elite Scientists Sponsorship Program by the CAST (2022QNRC001)+4 种基金the Outstanding Youth Science Fund Project of Natural Science Foundation of Jiangsu Province (BK20211576)the Central Government Guides Local Funds (ZYYD2023A13)Key Technology Research and Development Program of Jiangsu Province (BE2023370)Hainan Province (ZDYF2022XDNY233)a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Wheat bran, a principal byproduct of flour milling, stands as an abundant source of dietary fiber, yet its economic potential remains under-exploited in current forage applications. Arabinoxylan(AX), constituting the core of dietary fiber, emerges as a versatile compound with multifaceted functionalities. Its nutritional significance,coupled with its role in cereal food processing, has prompted a surge of studies focusing on the valorization of wheat bran AX. Moreover, the hydrolyzed derivative, arabinoxylan oligosaccharides(AXOS), demonstrates prebiotic and antioxidant properties, offering potential avenues to mitigate the risk of chronic diseases. This review summarizes current knowledge on the valorization of wheat bran AX in terms of the processing and nutritional properties of AX. Moreover, multiple novel applications of AX in the materials area, including biodegradable food packaging films, delivery of bioactive substances as nanoparticles, and the manufacture of food emulsifiers, are also highlighted to extend the utilization of AX. This review underscores the immense potential of wheat bran AX, advocating for its exploitation not only as a nutritional asset but also as a primary ingredient in advanced materials. The synthesis of nutritional and materials perspectives accentuates the multifaceted utility of wheat bran AX, thereby paving the way for sustainable valorization pathways. By unraveling the latent potential within AX, this paper advocates for the holistic and sustainable utilization of wheat bran in diverse, value-added applications.
文摘BACKGROUND Esophageal perforation or postoperative leak after esophageal surgery remain a life-threatening condition.The optimal management strategy is still unclear.AIM To determine clinical outcomes and complications of our 15-year experience in the multidisciplinary management of esophageal perforations and anastomotic leaks.METHODS A retrospective single-center observational study was performed on 60 patients admitted at our department for esophageal perforations or treated for an anastomotic leak developed after esophageal surgery from January 2008 to December 2023.Clinical outcomes were analyzed,and complications were evaluated to investigate the efficacy and safety of our multidisciplinary management based on the preservation of the native or reconstructed esophagus,when feasible.RESULTS Among the whole series of 60 patients,an urgent surgery was required in 8 cases due to a septic state.Fifty-six patients were managed by endoscopic or hybrid treatments,obtaining the resolution of the esophageal leak/perforation without removal of the native or reconstructed esophagus.The mean time to resolution was 54.95±52.64 days,with a median of 35.5 days.No severe complications were recorded.Ten patients out of 56(17.9%)developed pneumonia that was treated by specific antibiotic therapy,and in 6 cases(10.7%)an atrial fibrillation was recorded.Seven patients(12.5%)developed a stricture within 12 months,requiring one or two endoscopic pneumatic dilations to solve the problem.Mortality was 1.7%.CONCLUSION A proper multidisciplinary approach with the choice of the most appropriate treatment can be the key for success in managing esophageal leaks or perforations and preserving the esophagus.
基金sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant No.2023D01C197Performance Incentive Guidance Project of Chongqing Scientific Research Institutions(cstc2022jxjl20016).
文摘With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesoscopic dissipative particle dynamics method is used to study themechanism of the crystallization and deposition adsorbed on thewall.The results show that in the absence of water molecules,the paraffin molecules near the substrate are deposited on themetallic surface with a horizontalmorphology,while the paraffin molecules close to the fluid side are arranged in a vertical column morphology.In the emulsified system,more water molecules will be absorbed on the metallic substrate than paraffin molecules,which obstructed the direct interaction between paraffin molecules and solid surface.Therefore,the addition of watermolecules hinders the crystallization of wax near the substrate.Perversely,on the fluid side,water molecules promote the formation of paraffin crystallization.The research in this paper reveals the crystallization mechanism of paraffin wax in oil-water emulsions in the pipeline from the microscopic scale,which provides theoretical support for improving the recovery of wax-containing crude oil and enhancing the transport efficiency.
基金Supported by Henan Innovation Project for University Prominent Research Talents(2004KYCX010)~~
文摘[Objective] The properties of butachlor microemulsion were studied for developing a new formulation of new pesticides.[Method]AT method was used to determine the pseudo-ternary phase diagram to confirm the formulation of butachlor microemulsion.Through the measurement of electrical conductivity,the W/O and O/W types in microemulsion region of butachlor/emulsifier/water system were confirmed and the change of phase behavior during preparation process was discussed.[Result]The dilution stability,low temperature stability,heat stability,ageing stability,density and viscosity etc.of butachlor microemulsion met the requirement of the experiments,which demonstrated the qualified quality of butachlor.The density decreased linearly with the increase of temperature and the change of viscosity with temperature conformed to Andrade equation.[Conclusion]The research was helpful to the application of butachlor microemulsion in pesticide formulation.
基金supported from the Shanghai Association for Science and Technology Achievements Transformation Alliance Program(No.LM201851)the National Natural Science Foundation of China(Nos.21878188,21606151 and 21707092)+2 种基金Shanghai Excellent Technology Leaders Program(No.17XD1424900)"Chenguang Program"from Shanghai Education Development FoundationShanghai Municipal Education Commission(No.18CGB12)。
文摘In this study,various nonionic surfactants(NS) with different ethylene oxide(EO) numbers and tail lengths and its binary blends with anionic surfactants(AS) were used as emulsifiers for naphthenic oil to form the microemulsion metalworking fluids(MWFs),and the effects of them on the stability of the emulsion system were investigated by formulation triangle method.The results indicated that binary complex surfactants of NS and AS as emulsifiers exhibited better emulsifying effect than that of single NS.NS with different EO numbers and tail lengths presented various emulsifying effects.NS(EO=10)exhibited the greatest number of stable formulations,especially the TX-10,but no linear relationship existed between the number of stable formulations and the tail length of NS.In addition,aromatic primary alcohol ethoxy late(APAE) series surfactants containing benzene groups similar to the cycloalkanes in the naphthenic oil so that presented the best emulsifying affect and the greatest number of stable formulations.The co-surfactant of sodium dodecyl benzene sulfonate(SDBS) binary blends with NS exerted the best synergistic effect,and the stable formulations numbers were ranged from 5 to 7,next sodium stearate(SS) comes last followed by sodium dodecyl sulfate(SDS-1) and sodium dodecyl sulfonate(SDS-2).
文摘An alternative polymeric surfactant P(M3/St) was synthesized by solution polymerization of maleamic acid as hydrophilic monomer and styrene as hydrophobic monomer. Some factors that affect the yield and properties of the polymeric surfactant were investigated systemically. The surface tension of the polymeric surfactant reaches 37-38 mN/m. It is proved that the polymeric surfactant shows very good surface activity and emulsifying ability. The TG analysis shows that the temperature of the thermal degradation can reach 314.4 ℃. It will be used as a new type of polymeric surfactant.
文摘Various degrees of palmitoylated konjac glucomannan (PKGM) are prepared by heterogeneous method. Differential thermal analysis (DTA) thermographs show PKGM having certain degree of substitution (DS) gave a new crystalline peak at higher temperature. And PKGM having higher DS only shows the new crystalline state. Furthermore, the effect of the DS of PKGM on its emulsifying ability has been investigated in the water in oil(w/o) and oil in water(o/w) systems. It is demonstrated that it is a kind of good w/o emulsifier with the DS ranged between 1.00 and 1.70; Whereas for DS<0.50, It is a kind of good o/w emulsifier and an interesting phenomenon appears in o/w system. And the half time of emulsion turbidity is more than 1.5 h with PKGM having 2.72 of DS used as the emulsifier.