The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is st...The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is still not known the mechanism that leads to superconductivity. The electronic structure study is used for determining key features of the SC mechanism in these materials. The calculations were performed using the modern suite of programs MOLPRO 2021. We performed quantum calculations of a cluster embedded in a background charge distribution that represents the infinite crystal. The Natural Population Analysis was used for determining the charge and spin distribution in the studied materials. As follows from our results, the possible mechanism for superconductivity corresponds to the RVB theory proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates.展开更多
In introduction we presented a short historical survey of the discovery of superconductivity (SC) up to the Fe-based materials that are not superconducting in a pure state. For this type of material, the transition to...In introduction we presented a short historical survey of the discovery of superconductivity (SC) up to the Fe-based materials that are not superconducting in a pure state. For this type of material, the transition to SC state occurs in presence of different dopants. Recently in the Fe-based materials at high pressures, the SC was obtained at room critical temperature. In this paper, we present the results of calculations of the isolated cluster representing infinitum crystal with Rh and Pd as dopants. All calculations are performed with the suite of programs Gaussian 16. The obtained results are compared with our previous results obtained for embedded cluster using Gaussian 09. In the case of embedded cluster our methodology of the Embedded Cluster Method at the MP2 electron correlation level was applied. In the NBO population analysis two main features are revealed: the independence of charge density transfer from the spin density transfer and, the presence of orbitals with electron density but without spin density. This is similar to the Anderson’s spinless holon and confirms our conclusions in previous publications that the possible mechanism for superconductivity can be the RVB mechanism proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates.展开更多
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
文摘The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is still not known the mechanism that leads to superconductivity. The electronic structure study is used for determining key features of the SC mechanism in these materials. The calculations were performed using the modern suite of programs MOLPRO 2021. We performed quantum calculations of a cluster embedded in a background charge distribution that represents the infinite crystal. The Natural Population Analysis was used for determining the charge and spin distribution in the studied materials. As follows from our results, the possible mechanism for superconductivity corresponds to the RVB theory proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates.
文摘In introduction we presented a short historical survey of the discovery of superconductivity (SC) up to the Fe-based materials that are not superconducting in a pure state. For this type of material, the transition to SC state occurs in presence of different dopants. Recently in the Fe-based materials at high pressures, the SC was obtained at room critical temperature. In this paper, we present the results of calculations of the isolated cluster representing infinitum crystal with Rh and Pd as dopants. All calculations are performed with the suite of programs Gaussian 16. The obtained results are compared with our previous results obtained for embedded cluster using Gaussian 09. In the case of embedded cluster our methodology of the Embedded Cluster Method at the MP2 electron correlation level was applied. In the NBO population analysis two main features are revealed: the independence of charge density transfer from the spin density transfer and, the presence of orbitals with electron density but without spin density. This is similar to the Anderson’s spinless holon and confirms our conclusions in previous publications that the possible mechanism for superconductivity can be the RVB mechanism proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates.