In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are un...In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.展开更多
A research is done for multipath effects of low-angle tracking in meter-wave radar, and the theory of multi-scattering centers of complex target is discussed as well as the character of reflected echoes. This points o...A research is done for multipath effects of low-angle tracking in meter-wave radar, and the theory of multi-scattering centers of complex target is discussed as well as the character of reflected echoes. This points out that the distribution and scattering properties of scattering centers are the prime reasons which cause the variation of muhipath effects, and all the changes of position, motion and attitude of the target can influence the muhipath effects. By building of muhipath model for multi-scattering centers for target, the analysis above is verified and a new method of elevation estimation for low-angle target is presented. The new method uses canceling vectors obtained by searching to cancel reflected waves in echoes and reduce the influence of reflected com- ponents, which can improve the accuracy of elevation estimation of low-angle target and the performance of low- angle tracking in meter-wave radar. Experimental results verify the availability of the method.展开更多
Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rare...Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.展开更多
Ground elevation estimation is vital for numerous applications in autonomous vehicles and intelligent robotics including three-dimensional object detection,navigable space detection,point cloud matching for localizati...Ground elevation estimation is vital for numerous applications in autonomous vehicles and intelligent robotics including three-dimensional object detection,navigable space detection,point cloud matching for localization,and registration for mapping.However,most works regard the ground as a plane without height information,which causes inaccurate manipulation in these applications.In this work,we propose GeeNet,a novel end-to-end,lightweight method that completes the ground in nearly real time and simultaneously estimates the ground elevation in a grid-based representation.GeeNet leverages the mixing of two-and three-dimensional convolutions to preserve a lightweight architecture to regress ground elevation information for each cell of the grid.For the first time,GeeNet has fulfilled ground elevation estimation from semantic scene completion.We use the SemanticKITTI and SemanticPOSS datasets to validate the proposed GeeNet,demonstrating the qualitative and quantitative performances of GeeNet on ground elevation estimation and semantic scene completion of the point cloud.Moreover,the crossdataset generalization capability of GeeNet is experimentally proven.GeeNet achieves state-of-the-art performance in terms of point cloud completion and ground elevation estimation,with a runtime of 0.88 ms.展开更多
文摘In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.
文摘A research is done for multipath effects of low-angle tracking in meter-wave radar, and the theory of multi-scattering centers of complex target is discussed as well as the character of reflected echoes. This points out that the distribution and scattering properties of scattering centers are the prime reasons which cause the variation of muhipath effects, and all the changes of position, motion and attitude of the target can influence the muhipath effects. By building of muhipath model for multi-scattering centers for target, the analysis above is verified and a new method of elevation estimation for low-angle target is presented. The new method uses canceling vectors obtained by searching to cancel reflected waves in echoes and reduce the influence of reflected com- ponents, which can improve the accuracy of elevation estimation of low-angle target and the performance of low- angle tracking in meter-wave radar. Experimental results verify the availability of the method.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs (B18039)。
文摘Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.
基金the National Natural Science Foundation of China(No.U2033209)。
文摘Ground elevation estimation is vital for numerous applications in autonomous vehicles and intelligent robotics including three-dimensional object detection,navigable space detection,point cloud matching for localization,and registration for mapping.However,most works regard the ground as a plane without height information,which causes inaccurate manipulation in these applications.In this work,we propose GeeNet,a novel end-to-end,lightweight method that completes the ground in nearly real time and simultaneously estimates the ground elevation in a grid-based representation.GeeNet leverages the mixing of two-and three-dimensional convolutions to preserve a lightweight architecture to regress ground elevation information for each cell of the grid.For the first time,GeeNet has fulfilled ground elevation estimation from semantic scene completion.We use the SemanticKITTI and SemanticPOSS datasets to validate the proposed GeeNet,demonstrating the qualitative and quantitative performances of GeeNet on ground elevation estimation and semantic scene completion of the point cloud.Moreover,the crossdataset generalization capability of GeeNet is experimentally proven.GeeNet achieves state-of-the-art performance in terms of point cloud completion and ground elevation estimation,with a runtime of 0.88 ms.