To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FE...A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.展开更多
This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element...This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element method.The adhesion behavior is described based on the Maugis-Dugdale model.The adhesion-driven conjugate gradient method is employed to calculate the distribution of unknown pressures,while the discrete convolution-fast Fourier transform is utilized to compute the deformations,surface electric and magnetic potentials as well as the subsurface stresses,electric displacements,and magnetic inductions.The goal of this study is to investigate the influences of adhesion parameter,friction coefficient,coating thickness,and surface electric and magnetic charge densities on contact behaviors,such as contact area and pressures,electric and magnetic potentials,and subsurface stresses.展开更多
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge...In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.展开更多
This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The me...This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.展开更多
The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRE...The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture.展开更多
Hydraulic fracturing plays a critical role in enhancing shale gas production in deep shale reservoirs.Conventional hydraulic fracturing simulation methods rely on prefabricated grids,which can be hindered by the chall...Hydraulic fracturing plays a critical role in enhancing shale gas production in deep shale reservoirs.Conventional hydraulic fracturing simulation methods rely on prefabricated grids,which can be hindered by the challenge of being computationally overpowered.This study proposes an efficient fracturing simulator to analyze fracture morphology during hydraulic fracturing processes in deep shale gas reservoirs.The simulator integrates the boundary element displacement discontinuity method and the finite volume method to model the fluid-solid coupling process by employing a pseudo-3D fracture model to calculate the fracture height.In particular,the Broyden iteration method was introduced to improve the computational efficiency and model robustness;it achieved a 46.6%reduction in computation time compared to the Newton-Raphson method.The influences of horizontal stress differences,natural fracture density,and natural fracture angle on the modified zone of the reservoir were simulated,and the following results were observed.(1)High stress difference reservoirs have smaller stimulated reservoir area than low stress difference reservoirs.(2)A higher natural fracture angle resulted in larger modification zones at low stress differences,while the effect of a natural fracture angle at high stress differences was not significant.(3)High-density and long natural fracture zones played a significant role in enhancing the stimulated reservoir area.These findings are critical for comprehending the impact of geological parameters on deep shale reservoirs.展开更多
This study explores a sensitivity analysis method based on the boundary element method(BEM)to address the computational complexity in acoustic analysis with ground reflection problems.The advantages of BEM in acoustic...This study explores a sensitivity analysis method based on the boundary element method(BEM)to address the computational complexity in acoustic analysis with ground reflection problems.The advantages of BEM in acoustic simulations and its high computational cost in broadband problems are examined.To improve efficiency,a Taylor series expansion is applied to decouple frequency-dependent terms in BEM.Additionally,the SecondOrder Arnoldi(SOAR)model order reduction method is integrated to reduce computational costs and enhance numerical stability.Furthermore,an isogeometric sensitivity boundary integral equation is formulated using the direct differentiation method,incorporating Cauchy principal value integrals and Hadamard finite part integrals to handle singularities.The proposed method improves the computational efficiency,and the acoustic sensitivity analysis provides theoretical support for further acoustic structure optimization.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i...Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.展开更多
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio...Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.展开更多
The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction...The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction behavior between hydraulic fractures(HFs) and gravels. A coupled hydro-mechanical model is proposed for HF propagation in glutenite using a grain-based discrete element method. This paper first investigates the dynamic evolution of HFs in glutenite, then analyzes the influences of various factors such as horizontal stress difference(Δσ), minimum horizontal stress(σh), gravel content(Vg), gravel size(dg), and stiffness ratio of gravel to matrix(Rs) on HF propagation geometries. Results show that penetrating the gravel is the primary HF-gravel interaction behavior, which follows sequential and staggered initiation modes. Bypassing the gravel is the secondary behavior, which obeys the sequential initiation mode and occurs when the orientation of the gravel boundary is inclined to the maximum horizontal stress(σH). An offset along the gravel boundary is usually formed while penetrating gravels, and the offsets may cause fracture widths to decrease by 37.8%-84.4%. Even if stress dominates the direction of HF propagation, HFs still tend to deflect within gravels. The deviation angle from σH decreases with rising Δσand increases with the increase of dgand Rs. Additionally, intra-gravel shear HFs(IGS-HFs) are prone to be generated in coarse-grained glutenite under high Δσ, while more gravel-bypassing shear HFs(GBSHFs) tend to be created in argillaceous glutenite with high Rsthan in sandy glutenite with low Rs. The findings above prompt the emergence of a novel HF propagation pattern in glutenite, which helps to understand the real HF geometries and to provide theoretical guidance for treatments in the field.展开更多
The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new...The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.展开更多
Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the stru...Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.展开更多
Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres wi...Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres with artificial inherent pores are an important type of lightweight proppant,enabling their transport to distant fracture extremities and enhancing fracture conductivity.However,the focus frequently gravitates towards the low-density advantage,often overlooking the pore geometry impacts on compressive strength by traditional strength evaluation.This paper numerically bypasses such limitations by using a combined finite and discrete element method(FDEM)considering experimental results.The mesh size of the model undergoes validation,followed by the calibration of cohesive element parameters via the single particle compression test.The stimulation elucidates that proppants with a smaller pore size(40μm)manifest crack propagation evolution at a more rapid pace in comparison to their larger-pore counterparts,though the influence of pore diameter on overall strength is subtle.The inception of pores not only alters the trajectory of crack progression but also,with an increase in porosity,leads to a discernible decline in proppant compressive strength.Intriguingly,upon crossing a porosity threshold of 10%,the decrement in strength becomes more gradual.A denser congregation of pores accelerates crack propagation,undermining proppant robustness,suggesting that under analogous conditions,hollow proppants might not match the strength of their porous counterparts.This exploration elucidates the underlying mechanisms of proppant failure from a microstructural perspective,furnishing pivotal insights that may guide future refinements in the architectural design of porous proppant.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout a...Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.展开更多
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.T...Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.展开更多
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金the National Natural Science Foundation of China(No.11672238)the 111 Project(No.BP0719007)the Shaanxi Province Natural Science Foundation(No.2020JZ-06)for the financial support.
文摘A modified inner-element edge-based smoothed finite element method(IES-FEM)is developed and integrated with ABAQUS using a user-defined element(UEL)in this study.Initially,the smoothing domain discretization of IES-FEM is described and compared with ES-FEM.A practical modification of IES-FEM is then introduced that used the technique employed by ES-FEM for the nodal strain calculation.The differences in the strain computation among ES-FEM,IES-FEM,and FEM are then discussed.The modified IES-FEM exhibited superior performance in displacement and a slight advantage in stress compared to FEM using the same mesh according to the results obtained from both the regular and irregular elements.The robustness of the IES-FEM to severely deformed meshes was also verified.
基金support from the National Natural Science Foundation of China(12102085)the Postdoctoral Science Foundation of China(2023M730504)+2 种基金the Sichuan Province Regional Innovation and Cooperation Project(2024YFHZ0210)supported by the European Union-NextGenerationEU through the Italian Ministry of University and Research under the following programs:(NM)PRIN2022(Projects of Relevant National Interest)grant no.2022SJ8HTC-Electroactive Gripper for Micro-Object Manipulation(ELFIN)(NM)PRIN2022 PNRR(Projects of Relevant National Interest)grant no.P2022MAZHX-Tribological Modeling for Sustainable Design of Industrial Frictional Interfaces(TRIBOSCORE).
文摘This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element method.The adhesion behavior is described based on the Maugis-Dugdale model.The adhesion-driven conjugate gradient method is employed to calculate the distribution of unknown pressures,while the discrete convolution-fast Fourier transform is utilized to compute the deformations,surface electric and magnetic potentials as well as the subsurface stresses,electric displacements,and magnetic inductions.The goal of this study is to investigate the influences of adhesion parameter,friction coefficient,coating thickness,and surface electric and magnetic charge densities on contact behaviors,such as contact area and pressures,electric and magnetic potentials,and subsurface stresses.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12371393,11971150 and 11801143)Natural Science Foundation of Henan Province(Grant No.242300421047).
文摘In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.
基金Financial support of this work by the Technology Development program of China(Grant No.2022204B003)National Natural Science Foundation of China(12272083 and 12172078)the Fundamental Research Funds for the Central Universities(DUT24YJ136)is gratefully acknowledged.
文摘This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.
基金funded by the National Natural Science Foundation of China(No.51978048).
文摘The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture.
文摘Hydraulic fracturing plays a critical role in enhancing shale gas production in deep shale reservoirs.Conventional hydraulic fracturing simulation methods rely on prefabricated grids,which can be hindered by the challenge of being computationally overpowered.This study proposes an efficient fracturing simulator to analyze fracture morphology during hydraulic fracturing processes in deep shale gas reservoirs.The simulator integrates the boundary element displacement discontinuity method and the finite volume method to model the fluid-solid coupling process by employing a pseudo-3D fracture model to calculate the fracture height.In particular,the Broyden iteration method was introduced to improve the computational efficiency and model robustness;it achieved a 46.6%reduction in computation time compared to the Newton-Raphson method.The influences of horizontal stress differences,natural fracture density,and natural fracture angle on the modified zone of the reservoir were simulated,and the following results were observed.(1)High stress difference reservoirs have smaller stimulated reservoir area than low stress difference reservoirs.(2)A higher natural fracture angle resulted in larger modification zones at low stress differences,while the effect of a natural fracture angle at high stress differences was not significant.(3)High-density and long natural fracture zones played a significant role in enhancing the stimulated reservoir area.These findings are critical for comprehending the impact of geological parameters on deep shale reservoirs.
基金supported by the Shanxi Scholarship Council of China(Grant No.2023-036)the Natural Science Foundation of Shanxi Province(Grant No.202303021222020).
文摘This study explores a sensitivity analysis method based on the boundary element method(BEM)to address the computational complexity in acoustic analysis with ground reflection problems.The advantages of BEM in acoustic simulations and its high computational cost in broadband problems are examined.To improve efficiency,a Taylor series expansion is applied to decouple frequency-dependent terms in BEM.Additionally,the SecondOrder Arnoldi(SOAR)model order reduction method is integrated to reduce computational costs and enhance numerical stability.Furthermore,an isogeometric sensitivity boundary integral equation is formulated using the direct differentiation method,incorporating Cauchy principal value integrals and Hadamard finite part integrals to handle singularities.The proposed method improves the computational efficiency,and the acoustic sensitivity analysis provides theoretical support for further acoustic structure optimization.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42102346,42172301).
文摘Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.
基金a U.S. Federal Railroad Administration (FRA)BAA project,titled “Mitigation of Differential Movement at Railway Transitions for High-Speed Passenger Rail and Joint Passenger/Freight Corridors”the financial support provided by the China Scholarship Council (CSC),which funded Zhongyi Liu’s and Wenjing Li’s time and research efforts for this study
文摘Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.
基金supported by the National Natural Science Foundation of China(Grant No.52304003)the Natural Science Foundation of Sichuan Province(Grant No.2024NSFSC0961)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230090).
文摘The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction behavior between hydraulic fractures(HFs) and gravels. A coupled hydro-mechanical model is proposed for HF propagation in glutenite using a grain-based discrete element method. This paper first investigates the dynamic evolution of HFs in glutenite, then analyzes the influences of various factors such as horizontal stress difference(Δσ), minimum horizontal stress(σh), gravel content(Vg), gravel size(dg), and stiffness ratio of gravel to matrix(Rs) on HF propagation geometries. Results show that penetrating the gravel is the primary HF-gravel interaction behavior, which follows sequential and staggered initiation modes. Bypassing the gravel is the secondary behavior, which obeys the sequential initiation mode and occurs when the orientation of the gravel boundary is inclined to the maximum horizontal stress(σH). An offset along the gravel boundary is usually formed while penetrating gravels, and the offsets may cause fracture widths to decrease by 37.8%-84.4%. Even if stress dominates the direction of HF propagation, HFs still tend to deflect within gravels. The deviation angle from σH decreases with rising Δσand increases with the increase of dgand Rs. Additionally, intra-gravel shear HFs(IGS-HFs) are prone to be generated in coarse-grained glutenite under high Δσ, while more gravel-bypassing shear HFs(GBSHFs) tend to be created in argillaceous glutenite with high Rsthan in sandy glutenite with low Rs. The findings above prompt the emergence of a novel HF propagation pattern in glutenite, which helps to understand the real HF geometries and to provide theoretical guidance for treatments in the field.
文摘The protection effectiveness of traditional Lightning Strike Protection(LSP)for composite rotor blade of helicopter can be diminished due to the explosion risk in overlapping attachment under lightning strike,so a new protection method based on Air Breakdown and insulating adhesive layer(AB-LSP method)was designed to avoid it.In this study,a numerical method was developed to simulate the electrical breakdown,and verified by experiment results.Based on this method,a Finite Element Model(FEM)was established to investigate the effect of two factors(breakdown strength and initial ablation temperature of adhesive layer)on the LSP effectiveness.The results show that the breakdown strength impacts more to the ablation damage in composite than that of high-temperature resistance.Then,another FEM was established to predict the ablation damage by lightning strike in the AB-LSP method protected composite rotor blade.The mechanisms and potential key parameters(magnitude of lightning current,discharge channel location,adhesive layer thickness,and air gap width)that could affect the protection effectiveness were analyzed.The introduction of air breakdown changes the current conduction path and reduces explosion risk.After rational design,this method can offer effective lightning protection for composite helicopter rotor blade and other composite structures.
基金financially supported by the National Natural Science Foundation of China(Nos.12302228 and 12372170)。
文摘Skin panels on supersonic vehicles are subjected to aero-thermo-acoustic loads,resulting in a well-known multi-physics dynamic problem.The high-frequency dynamic response of these panels significantly impacts the structural safety of supersonic vehicles,but it has been rarely investigated.Given that existing methods are inefficient for high-frequency dynamic analysis in multi-physics fields,the present work addresses this challenge by proposing a Stochastic Energy Finite Element Method(SEFEM).SEFEM uses energy density instead of displacement to describe the dynamic response,thereby significantly enhancing its efficiency.In SEFEM,the effects of aerodynamic and thermal loads on the energy propagation characteristics are studied analytically and incorporated into the energy density governing equation.These effects are also considered when calculating the input power generated by the acoustic load,and two effective approaches named Frequency Response Function Method(FRFM)and Mechanical Impedance Method(MIM)are developed accordingly and integrated into SEFEM.The good accuracy,applicability,and high efficiency of the proposed SEFEM are demonstrated through numerical simulations performed on a two-dimensional panel under aero-thermoacoustic loads.Additionally,the effects and underlying mechanisms of aero-thermo-acoustic loads on the high-frequency response are explored.This work not only presents an efficient approach for predicting high-frequency dynamic response of panels subjected to aero-thermo-acoustic loads,but also provides insights into the high-frequency dynamic characteristics in multi-physics fields.
基金the financial support provided by Tianfu Yongxing Laboratory Organized Research Project Funding(No.2023CXXM01)the ARC linkage program(No.LP200100420).
文摘Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres with artificial inherent pores are an important type of lightweight proppant,enabling their transport to distant fracture extremities and enhancing fracture conductivity.However,the focus frequently gravitates towards the low-density advantage,often overlooking the pore geometry impacts on compressive strength by traditional strength evaluation.This paper numerically bypasses such limitations by using a combined finite and discrete element method(FDEM)considering experimental results.The mesh size of the model undergoes validation,followed by the calibration of cohesive element parameters via the single particle compression test.The stimulation elucidates that proppants with a smaller pore size(40μm)manifest crack propagation evolution at a more rapid pace in comparison to their larger-pore counterparts,though the influence of pore diameter on overall strength is subtle.The inception of pores not only alters the trajectory of crack progression but also,with an increase in porosity,leads to a discernible decline in proppant compressive strength.Intriguingly,upon crossing a porosity threshold of 10%,the decrement in strength becomes more gradual.A denser congregation of pores accelerates crack propagation,undermining proppant robustness,suggesting that under analogous conditions,hollow proppants might not match the strength of their porous counterparts.This exploration elucidates the underlying mechanisms of proppant failure from a microstructural perspective,furnishing pivotal insights that may guide future refinements in the architectural design of porous proppant.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
基金Project supported by the National MCF Energy R&D Program(Grant No.2022YFE03190100)the National Natural Science Foundation of China(Grant Nos.12422513,12105035,and U21A20438)the Xiaomi Young Talents Program.
文摘Controlled nuclear fusion represents a significant solution for future clean energy,with ion cyclotron range of frequency(ICRF)heating emerging as one of the most promising technologies for heating the fusion plasma.This study primarily presents a self-developed 2D ion cyclotron resonance antenna electromagnetic field solver(ICRAEMS)code implemented on the MATLAB platform,which solves the electric field wave equation by using the finite element method,establishing perfectly matched layer(PML)boundary conditions,and post-processing the electromagnetic field data.This code can be utilized to facilitate the design and optimization processes of antennas for ICRF heating technology.Furthermore,this study examines the electric field distribution and power spectrum associated with various antenna phases to investigate how different antenna configurations affect the electromagnetic field propagation and coupling characteristics.