Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acousti...A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acoustic infinite element are similar to the (Burnett's) method, while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor. The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical. Coupling with the standard finite element, this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape. This novel method was deduced in brief and the conclusion was kept in detail. To test the feasibility of this novel method efficiently,in the examples the infinite elements were considered,excluding the finite elements relative. This novel ellipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere. The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements. Analytical and numerical results of these examples show that this novel method is feasible.展开更多
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc...The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.展开更多
A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement s...A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.展开更多
扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数...扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。展开更多
文摘Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
文摘A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acoustic infinite element are similar to the (Burnett's) method, while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor. The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical. Coupling with the standard finite element, this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape. This novel method was deduced in brief and the conclusion was kept in detail. To test the feasibility of this novel method efficiently,in the examples the infinite elements were considered,excluding the finite elements relative. This novel ellipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere. The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements. Analytical and numerical results of these examples show that this novel method is feasible.
基金National Natural Science Foundation of China!59575026
文摘The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
基金financial support by the Open Foundation of Chongqing Key Laboratory of Geomechanics and Geoenvironment Protection(Logistical Engineering University)(No.GKLGGP 2013-02)
文摘A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.
文摘扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。