期刊文献+
共找到5,355篇文章
< 1 2 250 >
每页显示 20 50 100
Diclofenac-enriched polyurethane-based scaffolds produced by electrospinning: drug release, cytotoxicity, and anti-inflammatory effect
1
作者 Zhanna Konstantinovna Nazarkina* Boris Pavlovich Chelobanov +1 位作者 Ren Il Kvon Pavel Petrovich Laktionov 《Biomedical Engineering Communications》 2026年第1期26-34,共9页
Background:The development of materials for cardiovascular surgery that would improve the effectiveness of surgical interventions remains an important task.Surgical intervention during the implantation of vascular pro... Background:The development of materials for cardiovascular surgery that would improve the effectiveness of surgical interventions remains an important task.Surgical intervention during the implantation of vascular prostheses and stents,and the body’s reaction to artificial materials,could lead to chronic inflammation,a local increase in the concentration of proinflammatory factors,and stimulation of unwanted tissue growth.The introduction of nonsteroidal anti-inflammatory drugs into implantable devices could be used to obtain vascular implants that do not induce inflammation and do not induce neointimal tissue outgrowth.Methods:The scaffolds were made by electrospinning from mixtures of polyurethane(PU)with diclofenac(DF).The kinetics of DF release from the scaffolds composed of 3%PU/10%HSA/3%DMSO/DF and 3%PU/DF were studied.The biocompatibility and anti-inflammatory effects of the obtained scaffolds on human gingival fibroblasts and umbilical vein endothelial cells were studied.Results:Both types of scaffolds are characterized by fast DF release.The viability of cells cultured on scaffolds is 2 times worse than that of cells cultured on plastic.The level of the proinflammatory cytokine IL-6 in the culture medium of cells cultured on DF-containing scaffolds was lower than that of cells cultured on scaffolds without DF.Conclusion:The introduction of DF into scaffolds minimizes the inflammation caused by cell reactions to an artificial material. 展开更多
关键词 DICLOFENAC electrospinNING drug-enriched scaffolds POLYURETHANE cardiovascular tissue engineering vascular grafts and stents drug delivery
暂未订购
Ultrasensitive electrospinning fibrous strain sensor with synergistic conductive network for human motion monitoring and human-computer interaction 被引量:1
2
作者 Jingwen Wang Shun Liu +6 位作者 Zhaoyang Chen Taoyu Shen Yalong Wang Rui Yin Hu Liu Chuntai Liu Changyu Shen 《Journal of Materials Science & Technology》 2025年第10期213-222,共10页
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ... With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases. 展开更多
关键词 Flexible strain sensors Synergistic conductive network electrospinning fibrous membrane Motion monitoring Human-machine interface
原文传递
Super Adsorption Behavior of Electrospinning-derived Porous Carbon Nanofibers towards Methyl Blue
3
作者 JIANG Zhong-wei LI Xia-chu-qin +2 位作者 HU Cong-yi LI Yuan-fang HUANG Cheng-zhi 《分析测试学报》 北大核心 2025年第9期1878-1888,共11页
Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of opera... Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers. 展开更多
关键词 electrospinNING porous carbon nanofibers pore-making effect wastewater treatment ADSORPTION
在线阅读 下载PDF
A review of the use of electrospinning in the preparation of flexible lithium-ion batteries
4
作者 XING Jia-yi ZHANG Yu-zhuo +1 位作者 FENG Shu-xin JI Ke-meng 《新型炭材料(中英文)》 北大核心 2025年第2期270-292,共23页
Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIB... Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies. 展开更多
关键词 electrospinning technology Flexible lithium-ion batteries(FLIBs) Carbon material application Nanofiber electrodes Electrochemical energy storage and conversion
在线阅读 下载PDF
A Review of PEO(Polyethylene Oxide)Assisted Electrospinning of Chitosan:Innovation,Production,and Application
5
作者 Tanvir Raihan Himel Mahmud +2 位作者 Badhon Chandra Mazumder Nazif Hasan Chowdhury Mohammad Tajul Islam 《Journal of Polymer Materials》 2025年第3期677-711,共35页
Electrospinning has gained significant importance across various fields,including biomedicine,filtration,and packaging due to the control it provides over the properties of the resulting materials,such as fiber diamet... Electrospinning has gained significant importance across various fields,including biomedicine,filtration,and packaging due to the control it provides over the properties of the resulting materials,such as fiber diameter and membrane thickness.Chitosan is a biopolymer that can be utilized with both natural and synthetic copolymers,owing to its therapeutic potential,biocompatibility,and biodegradability.However,producing electrospun chitosan is challenging due to its high solution viscosity,which often results in the formation of beads instead of uniform fibers.To address this issue,the spinnability of chitosan is significantly enhanced,and the production of continuous nanofibers is facilitated by combining it with polymers such as polyethylene oxide(PEO)in suitable ratios.These chitosan–PEO nanofibers are primarily used in biomedical applications,including wound healing,drug delivery systems,and tissue engineering scaffolds.Additionally,they have shown promise in water treatment,filtration membranes,and packaging.Among all the nanofiber mats,chitosan/PEO-AC had the smallest fiber diameter(83±12.5 nm),chitosan/PEO_45S5 had the highest tensile strength(1611±678 MPa).This comprehensive review highlights recent advancements,ongoing challenges,and future directions in the electrospinning of chitosan-based fibers assisted by PEO. 展开更多
关键词 CHITOSAN PEO electrospinNING nanoparticles BIOPOLYMER wound healing tissue engineering
在线阅读 下载PDF
Review advances of electrospinning technology for zinc-based batteries:mechanisms,performances,and perspectives
6
作者 Huan Liu Yu-Xin Ding +1 位作者 Xiao-Jie Zhang Xiao-Bing Huang 《Rare Metals》 2025年第10期6924-6951,共28页
Zinc-based batteries(ZBBs)have garnered significant attention in the field of energy storage and conversion owing to their exceptional advantages,including high energy density,intrinsic environmental benignity,low mat... Zinc-based batteries(ZBBs)have garnered significant attention in the field of energy storage and conversion owing to their exceptional advantages,including high energy density,intrinsic environmental benignity,low material cost,as well as enhanced safety characteristics.Nevertheless,several critical challenges persist,predominantly the propensity for dendrite growth,inherent kinetic limitations,deleterious electrode side reactions,and perplexing shuttle effects,which collectively impede the practical implementation and commercial viability of ZBBs.In this context,fibers fabricated via electrospinning technology exhibit remarkable advantages in terms of enhanced specific surface area,improved electrical conductivity,and superior mechanical integrity,while also affording optimized pore structures.These unique features render electrospinning fibers particularly promising for addressing the key issues that limit ZBBs performance,including energy density,charge/discharge rate capabilities,and cycling stability.So,it is very necessary to summarize electrospinning technology application in ZBBs.This paper firstly analyzes the fundamental mechanisms and inherent challenges of ZBBs including zincion,zinc-air,and zinc-halide batteries.Subsequently,the application of electrospinning fiber structures in anodes,cathodes,separators,and electrolytes optimization for ZBBs is summarized.Finally,the prospect of electrospinning technology in ZBBs is envisioned,and existing challenges are presented for its further application. 展开更多
关键词 Energy storage Zinc-based batteries electrospinning technology Electrode Bifunctional electrocatalysts
原文传递
Electrospinning technology combined with MOFs:Bridging the development of high-performance zinc-air batteries
7
作者 Haotian Guo Lulu Zhao +6 位作者 Xinyu Liu Jing Li Pengfei Wang Zonglin Liu Linlin Wang Jie Shu Tingfeng Yi 《Chinese Journal of Catalysis》 2025年第12期32-67,共36页
Metal-organic frameworks(MOFs)are porous materials formed by the coordination of organic and inorganic components through coordination bonds.MOF-derived materials preserve the large surface area and inherent porosity ... Metal-organic frameworks(MOFs)are porous materials formed by the coordination of organic and inorganic components through coordination bonds.MOF-derived materials preserve the large surface area and inherent porosity of their parent structures,while simultaneously offering enhanced electrical conductivity and more efficient charge transport.Studies have shown that integrating electrospinning with MOFs into continuous nanofiber networks can effectively address issues such as MOF structural collapse,low conductivity,and leaching of active sites.Moreover,the electrospinning technique enables fine-tuning of the product’s morphology,architecture,and chemical composition,thereby unlocking new possibilities for advancing high-performance ZABs.This review provides a systematic overview of recent advances in non-precious metal electrocatalysts derived from electrospun-MOF composites and examines the unique advantages of combining electrospinning with MOF precursors in the design of oxygen electrocatalysts.It also investigates the morphological regulation of various fiber structures,including porous,hollow,core-shell,and beaded structures,as well as their influence on the catalytic performance.Finally,the performance enhancement strategies of electrospun-MOF catalyst materials are examined,and the development prospects along with future research directions related to oxygen electrocatalysts based on electrospun nanofibers are emphasized.This thorough review aims to offer meaningful insights and practical guidance for advancing the understanding,design,and fabrication of next-generation devices for energy conversion and storage. 展开更多
关键词 Zinc-air battery Oxygen reduction reaction Oxygen evolution reaction electrospinNING Metal-organic frameworks NANOFIBERS
在线阅读 下载PDF
Composite bioabsorbable vascular stents via 3D bio-printing and electrospinning for treating stenotic vessels 被引量:13
8
作者 刘媛媛 向科 +2 位作者 李瑜 陈海萍 胡庆夕 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期254-258,共5页
A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method whi... A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method which combines 3D bio-printing and electrospinning to prepare the composite bioabsorbable vascular stent (CBVS) is proposed. The inner layer of the CBVS can be obtained through 3D bio- printing using poly-p-dioxanone (PPDO). The thin nanofiber film that serves as the outer layer can be built through electrospinning using mixtures of chitosan-PVA (poly (vinyl alcohol)). Tests of mechanical properties show that the stent prepared through 3D bio-printing combined with electrospinning is better than that prepared through 3D bio- printing alone. Cells cultivated on the CBVS adhere and proliferate better due to the natural, biological chitosan in the outer layer. The proposed complex process and method can provide a good basis for preparing a controllable drug-carrying vascular stent. Overall, the CBVS can be a good candidate for treating stenotic vessels. 展开更多
关键词 3D three-dimensional bio-printing bioabsorbable vascular stent (BVS) electrospinNING CELLPROLIFERATION composite forming
在线阅读 下载PDF
MELT-ELECTROSPINNING OF PMMA 被引量:1
9
作者 黄争鸣 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第1期45-53,共9页
The melt electrospinning of PMMA was investigated. The averaged fiber diameter thus obtained was reduced from 34.0 μm to 19.7 μm by adding di-(2-ethylhexyl)phthalate to reduce viscosity of the molten PMMA, and it ... The melt electrospinning of PMMA was investigated. The averaged fiber diameter thus obtained was reduced from 34.0 μm to 19.7 μm by adding di-(2-ethylhexyl)phthalate to reduce viscosity of the molten PMMA, and it further lowered down to 4.0 μm when a KCl/ice-water solution was used as collection media. A comparison study on the PMMA fibers made through melt electrospinning and done by solution electrospinning was made. It was found that solution electrospinning was capable of fabricating very thin fibers as small as to a nanometer size, but resulted in a much wider fiber diameter range than melt-electrospinning did. In general, within some extent an increase in applied voltage and amount of the additive or a decrease in collection distance can give rise to a decreased fiber diameter and improved mechanical performance for the PMMA fibers by melt electrospinning. It was also indicated that the mechanical properties of the PMMA fibers made through melt-electrospinning were superior to those by solution elctropspinning. 展开更多
关键词 PMMA Melt-electrospinning Solution electrospinning.
在线阅读 下载PDF
Characterization of V_2O_5/MoO_3 composite photocatalysts prepared via electrospinning and their photodegradation activity for dimethyl phthalate 被引量:8
10
作者 揣宏媛 周德凤 +2 位作者 朱晓飞 李朝辉 黄唯平 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2194-2202,共9页
Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ... Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP. 展开更多
关键词 electrospinNING Vanadium pentoxide Molybdenum trioxide COMPOSITES Photodegradation activity Dimethyl phthalate
在线阅读 下载PDF
Direct fabrication of cerium oxide hollow nanofibers by electrospinning 被引量:11
11
作者 崔启征 董相庭 +1 位作者 王进贤 李梅 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期664-669,共6页
Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were character... Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG-DTA), and (FTIR). SEM micrographs indicated that the surface of the composite fibers was smooth and became coarse with the increase of calcination temperatures. The diameters of CeO2 hollow nanofibers (300 nm at 600 ℃ and 600 nm at 800 ℃ ) were smaller than those of PVP/Ce(NO3)3 composite fibers (1-2 um ). CeO2 hollow nanofibers were obtained at 600 ℃ and CeO2 hollow and porous nanofibers formed by nanoparti- cles were obtained at 800 ℃. The length of the CeO2 hollow nanofibers was greater than 50 um. XRD analysis revealed that the composite microfibers were amorphous in structure and CeO2 nanofibers were cubic in structure with space group O^5H - FM3m when calcination tem- peratures were 600-800 ℃. TG-DTA and FTIR revealed that the formation of CeO2 nanofibers was largely influenced by the calcination temperatures. Possible formation mechanism of CeO2 hollow nanofibers was proposed. 展开更多
关键词 CERIUM cerium oxide NANOFIBERS electrospinNING rare earths
在线阅读 下载PDF
Electrospinning preparation and luminescence properties of Eu(TTA)_3phen/polystyrene composite nanofibers 被引量:10
12
作者 张小萍 温世鹏 +2 位作者 胡水 张立群 刘力 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第3期333-339,共7页
Efficient luminescent composite nanofibers,composed of polystyrene(PS,Mw=250000) and europium complex Eu(TTA)3phen(TTA=2-thenoyltrifluoroacetone,phen=1,10-phenanthroline) with diameters ranging from 350 nm to 700 nm,w... Efficient luminescent composite nanofibers,composed of polystyrene(PS,Mw=250000) and europium complex Eu(TTA)3phen(TTA=2-thenoyltrifluoroacetone,phen=1,10-phenanthroline) with diameters ranging from 350 nm to 700 nm,were prepared by electrospinning and characterized by scanning electron microscope(SEM),Fourier transform infrared spectroscopy(FT-IR),fluorescence spectroscopy,and thermogravimetric analysis(TG).The room-temperature fluorescence spectra of the composite nanofibers were composed of the typical E... 展开更多
关键词 rare-earth complex electrospinNING photoluminescence property Judd-Ofelt theory
原文传递
Preparation and application of amino functionalized mesoporous nanofiber membrane via electrospinning for adsorption of Cr^(3+) from aqueous solution 被引量:7
13
作者 Ahmed A.Taha Junlian Qiao +1 位作者 Fengting Li Bingru Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第4期610-616,共7页
Novel amino (-NH2) functionalized mesoporous polyvinyl pyrrolidone (PVP)/SiO2 composite nanofiber membranes were fabricated by a one-step electrospinning method using poly (vinyl alcohol) and tetraethyl orthosil... Novel amino (-NH2) functionalized mesoporous polyvinyl pyrrolidone (PVP)/SiO2 composite nanofiber membranes were fabricated by a one-step electrospinning method using poly (vinyl alcohol) and tetraethyl orthosilicate (TEOS) mixed with cationic surfactant, cety|trimethyl ammonium bromide (CTAB) as the structure directing agent. Ureidopropyltriethoxysilane was used for functionalization of the internal pore surfaces. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), element analyzer and Nz adsorption-desorption isotherms, The nanofiber diameters, average pore diameters and surface areas were 100-700 nm, 2.86 nm and 873,62 m2/g, respectively. These mesoporous membranes functionalized with -NH2 groups exhibited very high adsorptions properties based on the adsorption of Cr3+ from an aqueous solution. Equilibrium adsorption was achieved after approximately 20 rain and more than 97% of chronium ions in the solution were removed. The membrane could be regenerated through acidification. 展开更多
关键词 MESOPOROUS electrospinNING NANOFIBER amino groups adsorption
原文传递
Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor 被引量:8
14
作者 Chang Liu Yongtao Tan +4 位作者 Ying Liu Kuiwen Shen Bowu Peng Xiaoqin Niu Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期587-593,共7页
Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mi... Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 SUPERCAPACITOR electrospinNING NANOFIBER Phase separation
在线阅读 下载PDF
Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination 被引量:5
15
作者 Kuiling Li Deyin Hou +2 位作者 Chaochen Fu Kai Wang Jun Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第1期277-288,共12页
To improve the mechanical properties of the electrospun nanofibrous membrane, the nonwoven fabrics and spacer fabrics were employed as support substrates to fabricate polyvinylidene fluoride(PVDF) nanofibrous composit... To improve the mechanical properties of the electrospun nanofibrous membrane, the nonwoven fabrics and spacer fabrics were employed as support substrates to fabricate polyvinylidene fluoride(PVDF) nanofibrous composite membranes. The influences of the substrate on membrane morphology, hydrophobicity, pore size and pore size distribution,porosity, mechanical strength and permeability were comprehensive evaluated. The electrospun composite membranes had a three dimension bead-fiber interconnected open structure and a rough membrane surface. The membrane surface presented a multilevel re-entrant structure and all the water contact angles were above 140°. In contrast with the pure PVDF nanofibrous membrane, the stress at break and the elastic modulus of the composite membranes increased by 4.5–16 times and 17.5–37 times, respectively. Since the spacer fabrics had less resistance to mass transfer, the membranes composited with spacer fabrics exhibited greater permeate fluxes compared with the composite membranes with the nonwoven fabrics as substrates.During the membrane distillation test, the highest permeate flux was up to 49.3 kg/m^2/hr at the feed temperature of 80°C. The long-time and repeat operation of membrane distillation desalination indicated the fabricated membrane with a good resistance to scaling and wetting.The results suggested the potential of the electrospun composite membrane for membrane distillation application. 展开更多
关键词 Membrane DISTILLATION electrospinNING SPACER FABRIC Polyvinylidene fluoride Mechanical strength
原文传递
Coaxial electrospinning core-shell fibers for self-healing scratch on coatings 被引量:5
16
作者 Pengchong Li Zhi Shang +5 位作者 Kejian Cui Huan Zhang Zhi Qiao Caizhen Zhu Ning Zhao Jian Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第1期157-159,共3页
Polystyrene(PS) fibers with core-shell structures were fabricated by coaxial electrostatic spinning,[10_TD$IF]in which there are liquid epoxy or curing agent as the core and PS as the shell. Scanning electron microsco... Polystyrene(PS) fibers with core-shell structures were fabricated by coaxial electrostatic spinning,[10_TD$IF]in which there are liquid epoxy or curing agent as the core and PS as the shell. Scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectra and optical microscope were utilized for charactering the morphology and composition of the fibers. Composite coatings embedded with the healant-loaded coreshell fibers have been prepared and the self-healing of the scratch on the coatings has been revealed. 展开更多
关键词 COAXIAL electrospinNING CORE-SHELL structure fibers SELF-HEALING Composite coating MORPHOLOGY
原文传递
ELECTROSPINNING OF ZEIN/CHITOSAN COMPOSITE FIBROUS MEMBRANES 被引量:5
17
作者 李新松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第2期171-179,共9页
Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan ... Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased. 展开更多
关键词 electrospinNING ZEIN CHITOSAN CROSSLINKING Fibrous membrane.
在线阅读 下载PDF
Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications 被引量:8
18
作者 George Z.Tan Yingge Zhou 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期314-323,共10页
The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative... The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative electrospinning strategy that adopts a symmetrically divergent electric field to induce rapid self-assembly of aligned polycaprolactone(PCL) nanofibers into a centimeter-scale architecture between separately grounded bevels. The 3D microstructures of the nanofiber scaffolds were characterized through a series of sectioning in both vertical and horizontal directions. PCL/collagen(type I)nanofiber scaffolds with different density gradients were incorporated in sodium alginate hydrogels and subjected to elemental analysis. Human fibroblasts were seeded onto the scaffolds and cultured for 7 days. Our studies showed that the inclination angle of the collector had significant effects on nanofiber attributes, including the mean diameter, density gradient, and alignment gradient. The fiber density and alignment at the peripheral area of the 45°-collector decreased by 21% and 55%, respectively, along the z-axis,while those of the 60°-collector decreased by 71% and 60%, respectively. By altering the geometry of the conductive areas on the collecting bevels, polyhedral and cylindrical scaffolds composed of aligned fibers were directly fabricated. By using a four-bevel collector, the nanofibers formed a matrix of microgrids with a density of 11%. The gradient of nitrogen-to-carbon ratio in the scaffold-incorporated hydrogel was consistent with the nanofiber density gradient. The scaffolds provided biophysical stimuli to facilitate cell adhesion, proliferation, and morphogenesis in 3D. 展开更多
关键词 Divergence electrospinning 3D nanofiber scaffold Tissue engineering Microstructure gradient
在线阅读 下载PDF
Structure,rheology and electrospinning of zein and poly(ethylene oxide) in aqueous ethanol solutions 被引量:5
19
作者 Ce Shi Shixia Xi +3 位作者 Yingchun Han Hao Zhang Jingsheng Liu Yunqi Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期305-310,共6页
Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure ... Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers. 展开更多
关键词 Small angle X-ray scattering ZEIN Poly(ethylene oxide) VISCOSITY electrospin
原文传递
Electrospinning nanofiber scaffolds for soft and hard tissue regeneration 被引量:9
20
作者 Xianrui Xie Yujie Chen +8 位作者 Xiaoyu Wang Xiaoqing Xu Yihong Shen Atta ur Rehman Khan Ali Aldalbahi Allison E.Fetz Gary L.Bowlin Mohamed El-Newehy Xiumei Mo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期243-261,共19页
Tissue engineering is an interdisciplinary field that integrates medical,biological,and engineering expertise to restore or regenerate the functionality of healthy tissues and organs.The three fundamental pillars of t... Tissue engineering is an interdisciplinary field that integrates medical,biological,and engineering expertise to restore or regenerate the functionality of healthy tissues and organs.The three fundamental pillars of tissue engineering are scaffolds,cells,and biomolecules.Electrospun nanofibers have been successfully used as scaffolds for a variety of tissue engineering applications because they are biomimetic of the natural,fibrous extracellular matrix(ECM)and contain a three-dimensional(3D)network of interconnected pores.In this review,we provide an overview of the electrospinning process,its principles,and the application of the resultant electrospun nanofibers for tissue engineering.We first briefly introduce the electrospinning process and then cover its principles and standard equipment for biomaterial fabrication.Next,we highlight the most important and recent advances related to the applications of electrospun nanofibers in tissue engineering,including skin,blood vessels,nerves,bone,cartilage,and tendon/ligament applications.Finally,we conclude with current advancements in the fabrication of electrospun nanofiber scaffolds and their biomedical applications in emerging areas. 展开更多
关键词 NANOFIBERS electrospinNING Tissue engineering REGENERATION Biomedical application
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部