This study elucidates the findings of a computational investigation into the stimulation characteristics of natural reservoir systems enhanced by high-voltage electropulse-assisted fluid injection.The presented method...This study elucidates the findings of a computational investigation into the stimulation characteristics of natural reservoir systems enhanced by high-voltage electropulse-assisted fluid injection.The presented methodology delineates the comprehensive rock-fracturing process induced by electropulse and subsequent fluid injection,encompassing the discharge circuit,plasma channel formation,shockwave propagation,and hydro-mechanical response.A hydromechanical model incorporating an anisotropic plastic damage constitutive law,discrete fracture networks,and heterogeneous distribution is developed to represent the natural reservoir system.The results demonstrate that high-voltage electropulse effectively generates intricate fracture networks,significantly enhances the hydraulic properties of reservoir systems,and mitigates the adverse impact of ground stress on fracturing.The stimulationenhancing effect of electropulse is observed to intensify with increasing discharge voltage,with enhancements of 118.0%,139.5%,and 169.0%corresponding to discharge voltages of 20 kV,40 kV,and 60 kV,respectively.Additionally,a high-voltage electropulse with an initial voltage of U_(0)=80 kV and capacitance C=5μF has been shown to augment the efficiency of injection activation to approximately 201.1%compared to scenarios without electropulse.Under the influence of high-voltage electropulse,the fluid pressure distribution diverges from the conventional single direction of maximum stress,extending over larger areas.These innovative methods and findings hold potential implications for optimizing reservoir stimulation in geo-energy engineering.展开更多
Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface.As such,it has the potential to confer significant advantage...Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface.As such,it has the potential to confer significant advantages to mining and drilling operations for mineral and energy resources.Nevertheless,before these benefits can be realized,a better understanding of these processes is required to improve their deployment in the field.In this paper,we employ a recently developed model of the grain-scale processes involved in electropulse stimulation to examine excavation of hard rock under realistic operating conditions.To that end,we investigate the maximum applied voltage within ranges of 120e600 kV,to observe the onset of rock fragmentation.We further study the effect of grain size on rock breakage,by comparing fine(granodiorite)and coarse grained(granite)rocks.Lastly,the pore fluid salinity is investigated,since the electric conductivity of the pore fluid is shown to be a governing factor for the electrical conductivity of the modeled system.This study demonstrates that all investigated factors are crucial to the efficiency of rock fragmentation by electropulsing.展开更多
The effect of electropulse on the solidification structure of commercially pure aluminium was studied. The orthogonal array L9 was used to determine the effect of three process parameters of electropulse modification ...The effect of electropulse on the solidification structure of commercially pure aluminium was studied. The orthogonal array L9 was used to determine the effect of three process parameters of electropulse modification (EPM), which were pulse current intensity, pulse frequency, and treating time. For each factor, three levels were chosen to cover the experimental region. According to the experimental results, the solidification structure of commercially pure aluminium was modified from large grains with columnar crystals to finer grains with equiaxed crystals, by allowing the electropulse to act on liquid aluminium. However, the solidification structures could be refined differently at different EPM parameters. Certain EPM parameters should be selected to get the optimum solidification structure. Among the three parameters, pulse frequency was the most important factor influencing the solidification structure, the secondary factor was current intensity, and treating time was the third one. The optimum parameters were the pulse frequency of 5 Hz, the current intensity of 68 A, and the treating time of l0 s.展开更多
Electropulse modification (EPM) process, a new physical field method for improving the solidification structure of metals was introduced.Different from other research, EPM is only acting pulse current on melt under li...Electropulse modification (EPM) process, a new physical field method for improving the solidification structure of metals was introduced.Different from other research, EPM is only acting pulse current on melt under liquid state.The solidification structure of Al-Si alloys, A1-Cu alloys,cast iron and steel can be modified obviously with this method: the solidification structure of ZL101 alloy presented the Na and Sr modification and the mechanical properties were enhanced; a large number of primary silicon appeared in the microstructure of ZL109 alloy; the equiaxed grain zone was expanded and the grains were fined in Al-5.0wt% Cu alloy; the graphitization took place in solidification process of molten cast iron; the grain sizes of solidification structure of T8 steel were reduced significantly and the shape of steel pearlites also changed; the equiaxed grain zone increased to 88% from original untreated 19%, the equiaxed grains were fined and the intercrystalline crack was avoided in concasting billet by continuously treating liquid electrical sheet steel in tundish.Effects of rare earths on casting Al-Si alloys were also summarized.The method of modifying the solidification structure of rare earth Al-Si alloys with EPM in producing the alloys was proposed.展开更多
This study investigates the effect of high current density electropulsing on the material in a rapid stress relaxation process.An AISI 1020 steel was shot-peened to induce surface compressive residual stresses in a co...This study investigates the effect of high current density electropulsing on the material in a rapid stress relaxation process.An AISI 1020 steel was shot-peened to induce surface compressive residual stresses in a controlled manner and subsequently electropulsed to investigate the changes in microstructure and defect configuration.AISI 1020 steel was chosen as it has a simple microstructure(plain ferritic)and composition with low alloying conditions.It is an appropriate material to study the effect of trans-mitting electric pulses on the microstructural defect evolution.A combination of electron-backscattered diffraction and transmission electron microscopy proved to be an effective tool in characterizing the post-electropulsing effects critically.By application of electropulsing,a reduction in the surface residual stress layer was noticed.Also,reductions in misorientation and dislocation density together with the disentan-glement of dislocations within the cold-worked layer were observed after electropulsing.Additionally,the annihilation of shot-peening-induced deformation bands beyond the residual layer depth was observed.These effects have been rationalised by taking into account the various possibilities of athermal effects of electropulsing.展开更多
The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused ...The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components.展开更多
Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Rese...Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.展开更多
In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures ...In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing.展开更多
To investigate the effect of the electropulsing on dislocation mobility,specimens cut from the cold-rolled titanium sheet were treated by high density electropulsing with the maximum current density of 7.22,7.64,7.96 ...To investigate the effect of the electropulsing on dislocation mobility,specimens cut from the cold-rolled titanium sheet were treated by high density electropulsing with the maximum current density of 7.22,7.64,7.96 kA/mm 2 ,pulse period 110μs.The internal friction and elastic modulus were measured by a dynamic mechanical analyzer(DMA).When strain amplitude lowers a certain critical one,the damping of the electropulsed titanium sheet is lower than that of the cold-rolled one.When the strain amplitude exceeds the critical one,the damping of the electropulsed titanium sheet is extraordinarily higher than that of the cold-rolled or conventional annealed one.Furthermore,it is found that the damping peak of the electropulsed titanium sheet shifts to lower temperature compared with the conventional annealed one.It is demonstrated that the electropulsing treatment can decrease dislocation tangles and enhance dislocation mobility.展开更多
Specimens cut from the cold-rolled commercially pure (CP) Ti sheet were treated by high density electropulsing (the maximum current density 7.22 kA/mm2, pulse period 110 las). The deformation behaviors of the CP T...Specimens cut from the cold-rolled commercially pure (CP) Ti sheet were treated by high density electropulsing (the maximum current density 7.22 kA/mm2, pulse period 110 las). The deformation behaviors of the CP Ti specimens at different states were determined by the uniaxial tensile test. The microstructure morphologies were observed by the optical microscopy. The results show that the electropulsing induced formation of f'me equal-axial grains and lamellar microstructures, which leads to the strength of the electropulsed CP Ti higher than that of the conventional annealed CP Ti. After electropulsing, the tensile strength and yield strength are increased by 100 MPa. And the electropulsed CP Ti has a good plasticity. The experimental results demonstrate that the electropulsing provides an effective approach to enhance the strength of cold-rolled CP Ti sheet and retain the required high ductility.展开更多
Electropulsing rolling (ER) and warm rolling (WR) processes were performed to roll AZ31 magnesium alloy sheets. Mechanical properties, microstructure and texture evolution of these specimens were investigated afte...Electropulsing rolling (ER) and warm rolling (WR) processes were performed to roll AZ31 magnesium alloy sheets. Mechanical properties, microstructure and texture evolution of these specimens were investigated after rolling. The results indicate that electropulsing accelerates the recrystallization of AZ31 alloy sheets during hot rolling. After electropulsing rolling at a relatively low temperature, the microstructure of the sample shows fine equiaxed recrystallized grains with a lower density of dislocations and precipitates. In contrast, the microstructure of the sample after warm rolling shows elongated grain, numerous deformed twins, and a high density of dislocation and precipitates. Electropulsing rolling helps weaken the basal fiber texture. Although both the alloy sheets (ER and WR) have typical basal fiber texture, the maximum pole intensity of basal in ER sample is weaker. ER sheet has higher yield strength and elongation compared to WR sheet. As a promising technique, electropulsing rolling can be used to improve the microstructure and mechanical properties of materials.展开更多
Specially designed wire-drawing equipment with multiple electropulse generator was introduced. The influences of multiple electropulses processing on the microstructure and properties of the hardened steel wire were i...Specially designed wire-drawing equipment with multiple electropulse generator was introduced. The influences of multiple electropulses processing on the microstructure and properties of the hardened steel wire were investigated. Samples treated by direct current under the same current density as that in multiple electropulses processing were carried out for contrast analysis. The results show that the optimized parameters of multiple electropulses processing will be facilitated to increase the nucleation rate and slow down the growth rate of recrystallized grains. Consequently, massive superfine grains of micro and sub-micro scale could be found in the steel wire. Thereby, the elongation was significantly enhanced with a relatively small strength reduction in comparison with as-received cold-drawing steel wires. Outstanding mechanical properties of steel wire were obtained.展开更多
Electropulsing treatment(EPT) was performed on a nickel base corrosion resistant alloy during aging.The effect of EPT on the microstructure and corrosion resistance of the alloy and the mechanisms were investigated....Electropulsing treatment(EPT) was performed on a nickel base corrosion resistant alloy during aging.The effect of EPT on the microstructure and corrosion resistance of the alloy and the mechanisms were investigated.The results show that the intergranular corrosion resistance can be improved substantially without the degradation of mechanical properties of the alloy by EPT.The EPT has an effect of enhancing the interface diffusion rate of the alloying element,which is higher than the body diffusion rate.And thus discontinuous precipitation of M23C6 type carbides appears at the grain boundary in the alloy by EPT,which decreases the depletion extent of the alloying elements at the grain boundary substantially.As a result,the intergranular corrosion resistance of the alloy can be improved by the EPT without any degradation of mechanical properties.展开更多
Studies show that the proper solid solution treatment(SST)is a key step in the precipitation strengthening of AA7150 Al alloy.Despite the superior characteristics of the fully dissolved phase,it has major drawbacks,in...Studies show that the proper solid solution treatment(SST)is a key step in the precipitation strengthening of AA7150 Al alloy.Despite the superior characteristics of the fully dissolved phase,it has major drawbacks,including high consumption of energy and low efficiency.Recently,electropulsing treatment(EPT)has been proposed to study dissolved precipitations and modify microstructures of AA7150 Al alloy faster than conventional SST.Experiments have been conducted in the present article,and the obtained results show that EPT can promote the rapid dissolution of theη’phase at relatively low temperatures in only 20 s.Meanwhile,the strength and ductility of electropulsed samples decrease drastically.Compared with conventional SST,EPT accelerates recrystallization and obtains relatively fine grains after 20 and 50 s electric pulses.Moreover,as the EPT time increases,the corresponding non-uniform local heating and the electron force promote dislocation generation and annihilation.展开更多
A 0.66 mm-diameter AZ31 alloy wire with ultimate tensile strength of 400 MPa and elongation of 28.5%was successfully prepared via the combination of cold-drawing and electropulsing treatment processing(EPT).Microstruc...A 0.66 mm-diameter AZ31 alloy wire with ultimate tensile strength of 400 MPa and elongation of 28.5%was successfully prepared via the combination of cold-drawing and electropulsing treatment processing(EPT).Microstructure observation showed that the grain size of EPTed samples was refined to about 1μm and the basal texture strength with maxima texture index was weakened to 7.18.EPT can significantly accelerate recrystallization by enhancing the mobility of dislocation and atomic diffusion due to the coupling of the thermal and athermal effects.Finally,uniform ultrafine-grained structure was obtained in the EPTed samples by static recrystallization completed in a very short time(30 s)at relatively low temperature(433 K).展开更多
The influence of electropulsing on the creep behaviour,strength,and microstructure of an Al−Cu−Li alloy during creep ageing was investigated.Electropulsing assisted creep ageing(ECA)and conventional creep ageing(CCA)w...The influence of electropulsing on the creep behaviour,strength,and microstructure of an Al−Cu−Li alloy during creep ageing was investigated.Electropulsing assisted creep ageing(ECA)and conventional creep ageing(CCA)were carried out under various stress levels and time conditions.Applying electropulsing results in a noteworthy change of creep behaviour,including a variation in creep curves,an increased creep rate in early stage,and an improved creep strain.The ECA specimen experiences a shorter time to the peak strength,and an increase in elongation by~17.4% without loss of the peak-aged strength compared with CCA specimen.The ultrafine nano-size subgrains are observed to form under electropulsing,which can result in an increased creep strain by increasing grain-boundary sliding.The enhancement of both dislocation interactions and solute diffusion under electropulsing is considered as a primary cause of disappearance of a platform stage during early creep ageing.Some of T1 precipitates around the grain boundary are observed in the peak ECA sample,resulting in an occurrence of transgranular fracture,which is further responsible for an increased elongation of the ECA specimen.展开更多
The specimens cut from the cold-rolled pure titanium sheet at 0°,45°and 90°to the rolling direction were treated by high density electropulsing(maximum current density J=(7.22-7.96)×10^(3)A/mm^(2),...The specimens cut from the cold-rolled pure titanium sheet at 0°,45°and 90°to the rolling direction were treated by high density electropulsing(maximum current density J=(7.22-7.96)×10^(3)A/mm^(2),pulse period t_(p)=110μs).The mechanical properties and microstructures of the cold-rolled,electropulsed and conventional annealed commercially pure titanium sheet were examined by using uniaxial tension test machine and optical microscope(OM),respectively.The results show that the deformation behavior of the electropulsed pure titanium sheet is significantly different from that of conventional annealed pure titanium sheet.The difference of the mechanical properties between the 0°,45°and 90°direction specimens is almost diminished.It is mainly due to the increase in dislocation mobility and formation of lamellar microstructure after the electropulsing.展开更多
The magneto-impedance(MI) effect in amorphous and current annealed Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 wires has been measured to investigate the influence of DC annealing,highcurrent-density electropulsing annealing and te...The magneto-impedance(MI) effect in amorphous and current annealed Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 wires has been measured to investigate the influence of DC annealing,highcurrent-density electropulsing annealing and tensile stress applied during annealing process.The results showed that the MI of DC annealed sample exhibits a sharp maximum.The Maximum MI ratio of 60%was observed in the sample of high-current-density electropulsing annealed under applied tensile stress.展开更多
AZ61 Mg alloy with homogeneous refined microstructure and exceptional mechanical properties was obtained by the combined technology of equal-channel angular pressing(ECAP)and electropulsing treatment(EPT)in this paper...AZ61 Mg alloy with homogeneous refined microstructure and exceptional mechanical properties was obtained by the combined technology of equal-channel angular pressing(ECAP)and electropulsing treatment(EPT)in this paper.Based on an ECAP die with an intersection angle of 160,the lower temperature is particularly adapted for AZ61 alloy to be deformed,in which accompanied by high accumulated defects density.The recrystallization of EPTed samples during different stages indicated that the recrystallization behavior of the deformed Mg alloy was mainly affected by the processing time and duration of EPT.Compared to those of the as-received samples,the average grain size of the EPTed samples was refined from 89μm to 1.0μm,accordingly the yields stress(YS)and ultimate tensile strength(UTS)were increased from 100 MPa and 260 MPa to 330 MPa and 448 MPa,respectively.The mechanisms of microstructure transformation and the reinforced mechanical properties were analyzed based on the strain of single ECAP,cumulative storage energy and the athermal effect of EPT.展开更多
Effects of electropulsing treatment(EPT)on the microstructural evolution and mechanical properties of a cold-rolled 316 L austenitic stainless steel with nano-lamellar structure were investigated.The EPT experiments w...Effects of electropulsing treatment(EPT)on the microstructural evolution and mechanical properties of a cold-rolled 316 L austenitic stainless steel with nano-lamellar structure were investigated.The EPT experiments were carried out with the electric current direction along the rolling direction(RD)and the transverse direction(TD)of the samples,respectively.Significant anisotropic electroplastic effects for the RD and TD specimens,i.e.,reduced hardness/strength and enhanced ductility,were obtained owing to the different recrystallization behaviors of the RD and TD specimens during EPT.The RD specimens after EPT with larger recrystallized grain size and higher volume fraction of recrystallization show lower strength and higher elongation than that of the TD specimens.The main reason might be attributed to the change of the current direction in the two kinds of samples,which results in the different sensitivity of the microstructures to thermal and athermal effects during EPT.展开更多
基金the National Nature Science Foundation of China(Grant Nos.42077435 and 42377171).
文摘This study elucidates the findings of a computational investigation into the stimulation characteristics of natural reservoir systems enhanced by high-voltage electropulse-assisted fluid injection.The presented methodology delineates the comprehensive rock-fracturing process induced by electropulse and subsequent fluid injection,encompassing the discharge circuit,plasma channel formation,shockwave propagation,and hydro-mechanical response.A hydromechanical model incorporating an anisotropic plastic damage constitutive law,discrete fracture networks,and heterogeneous distribution is developed to represent the natural reservoir system.The results demonstrate that high-voltage electropulse effectively generates intricate fracture networks,significantly enhances the hydraulic properties of reservoir systems,and mitigates the adverse impact of ground stress on fracturing.The stimulationenhancing effect of electropulse is observed to intensify with increasing discharge voltage,with enhancements of 118.0%,139.5%,and 169.0%corresponding to discharge voltages of 20 kV,40 kV,and 60 kV,respectively.Additionally,a high-voltage electropulse with an initial voltage of U_(0)=80 kV and capacitance C=5μF has been shown to augment the efficiency of injection activation to approximately 201.1%compared to scenarios without electropulse.Under the influence of high-voltage electropulse,the fluid pressure distribution diverges from the conventional single direction of maximum stress,extending over larger areas.These innovative methods and findings hold potential implications for optimizing reservoir stimulation in geo-energy engineering.
基金supported by Innosuisse-Swiss Innovation Agency-under grant number 28305.1 PFIW-IWsupport from SwissGeoPower。
文摘Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface.As such,it has the potential to confer significant advantages to mining and drilling operations for mineral and energy resources.Nevertheless,before these benefits can be realized,a better understanding of these processes is required to improve their deployment in the field.In this paper,we employ a recently developed model of the grain-scale processes involved in electropulse stimulation to examine excavation of hard rock under realistic operating conditions.To that end,we investigate the maximum applied voltage within ranges of 120e600 kV,to observe the onset of rock fragmentation.We further study the effect of grain size on rock breakage,by comparing fine(granodiorite)and coarse grained(granite)rocks.Lastly,the pore fluid salinity is investigated,since the electric conductivity of the pore fluid is shown to be a governing factor for the electrical conductivity of the modeled system.This study demonstrates that all investigated factors are crucial to the efficiency of rock fragmentation by electropulsing.
基金the National Natural Science Foundation of China (No.30160186).
文摘The effect of electropulse on the solidification structure of commercially pure aluminium was studied. The orthogonal array L9 was used to determine the effect of three process parameters of electropulse modification (EPM), which were pulse current intensity, pulse frequency, and treating time. For each factor, three levels were chosen to cover the experimental region. According to the experimental results, the solidification structure of commercially pure aluminium was modified from large grains with columnar crystals to finer grains with equiaxed crystals, by allowing the electropulse to act on liquid aluminium. However, the solidification structures could be refined differently at different EPM parameters. Certain EPM parameters should be selected to get the optimum solidification structure. Among the three parameters, pulse frequency was the most important factor influencing the solidification structure, the secondary factor was current intensity, and treating time was the third one. The optimum parameters were the pulse frequency of 5 Hz, the current intensity of 68 A, and the treating time of l0 s.
基金Project supported by the National Natural Science Foundation of China (50344030)
文摘Electropulse modification (EPM) process, a new physical field method for improving the solidification structure of metals was introduced.Different from other research, EPM is only acting pulse current on melt under liquid state.The solidification structure of Al-Si alloys, A1-Cu alloys,cast iron and steel can be modified obviously with this method: the solidification structure of ZL101 alloy presented the Na and Sr modification and the mechanical properties were enhanced; a large number of primary silicon appeared in the microstructure of ZL109 alloy; the equiaxed grain zone was expanded and the grains were fined in Al-5.0wt% Cu alloy; the graphitization took place in solidification process of molten cast iron; the grain sizes of solidification structure of T8 steel were reduced significantly and the shape of steel pearlites also changed; the equiaxed grain zone increased to 88% from original untreated 19%, the equiaxed grains were fined and the intercrystalline crack was avoided in concasting billet by continuously treating liquid electrical sheet steel in tundish.Effects of rare earths on casting Al-Si alloys were also summarized.The method of modifying the solidification structure of rare earth Al-Si alloys with EPM in producing the alloys was proposed.
基金supported by the National Research Foundation of Singapore,Rolls-Royce Singapore Pte.Ltd.,and Nanyang Technological University through grants#002123-00009 and #002124-00009.
文摘This study investigates the effect of high current density electropulsing on the material in a rapid stress relaxation process.An AISI 1020 steel was shot-peened to induce surface compressive residual stresses in a controlled manner and subsequently electropulsed to investigate the changes in microstructure and defect configuration.AISI 1020 steel was chosen as it has a simple microstructure(plain ferritic)and composition with low alloying conditions.It is an appropriate material to study the effect of trans-mitting electric pulses on the microstructural defect evolution.A combination of electron-backscattered diffraction and transmission electron microscopy proved to be an effective tool in characterizing the post-electropulsing effects critically.By application of electropulsing,a reduction in the surface residual stress layer was noticed.Also,reductions in misorientation and dislocation density together with the disentan-glement of dislocations within the cold-worked layer were observed after electropulsing.Additionally,the annihilation of shot-peening-induced deformation bands beyond the residual layer depth was observed.These effects have been rationalised by taking into account the various possibilities of athermal effects of electropulsing.
基金supported by the National Nature Science Foun-dation of China(Grant No.50875061).
文摘The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University,China
文摘Electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to investigate effect of electropulsing on microstructure and texture evolution of Ti-6Al-4V during cold drawing. Research results demonstrate that the electropulsing treatment (EPT) can enhance the deformability of the grains with unfavorable orientations, which makes the compatibility of deformation among grains much better. A comparison in texture evolution between conventional cold drawing and EPT cold drawing indicates that the EPT promotes prismatic 〈a〉 slip moving, restricts pyramidal 〈c+a〉 slip occurring and accommodates the deformation with c-component by grain boundary sliding. The fraction decrease of low-angle grain boundaries for samples deformed with EPT reveals that the application of electropulsing restricts the formation of the incidental dislocation boundaries and the geometrically necessary boundaries.
基金Project(50875061) supported by the National Natural Science Foundation of ChinaProject(20092302110016) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing.
基金Project(50875061)supported by the National Natural Science Foundation of ChinaProject(20092302110016)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘To investigate the effect of the electropulsing on dislocation mobility,specimens cut from the cold-rolled titanium sheet were treated by high density electropulsing with the maximum current density of 7.22,7.64,7.96 kA/mm 2 ,pulse period 110μs.The internal friction and elastic modulus were measured by a dynamic mechanical analyzer(DMA).When strain amplitude lowers a certain critical one,the damping of the electropulsed titanium sheet is lower than that of the cold-rolled one.When the strain amplitude exceeds the critical one,the damping of the electropulsed titanium sheet is extraordinarily higher than that of the cold-rolled or conventional annealed one.Furthermore,it is found that the damping peak of the electropulsed titanium sheet shifts to lower temperature compared with the conventional annealed one.It is demonstrated that the electropulsing treatment can decrease dislocation tangles and enhance dislocation mobility.
基金Project (50875061) supported by the National Natural Science Foundation of China
文摘Specimens cut from the cold-rolled commercially pure (CP) Ti sheet were treated by high density electropulsing (the maximum current density 7.22 kA/mm2, pulse period 110 las). The deformation behaviors of the CP Ti specimens at different states were determined by the uniaxial tensile test. The microstructure morphologies were observed by the optical microscopy. The results show that the electropulsing induced formation of f'me equal-axial grains and lamellar microstructures, which leads to the strength of the electropulsed CP Ti higher than that of the conventional annealed CP Ti. After electropulsing, the tensile strength and yield strength are increased by 100 MPa. And the electropulsed CP Ti has a good plasticity. The experimental results demonstrate that the electropulsing provides an effective approach to enhance the strength of cold-rolled CP Ti sheet and retain the required high ductility.
基金Project(13520503100)supported by the Science and Technology Commission Foundation of Shanghai Municipality,China
文摘Electropulsing rolling (ER) and warm rolling (WR) processes were performed to roll AZ31 magnesium alloy sheets. Mechanical properties, microstructure and texture evolution of these specimens were investigated after rolling. The results indicate that electropulsing accelerates the recrystallization of AZ31 alloy sheets during hot rolling. After electropulsing rolling at a relatively low temperature, the microstructure of the sample shows fine equiaxed recrystallized grains with a lower density of dislocations and precipitates. In contrast, the microstructure of the sample after warm rolling shows elongated grain, numerous deformed twins, and a high density of dislocation and precipitates. Electropulsing rolling helps weaken the basal fiber texture. Although both the alloy sheets (ER and WR) have typical basal fiber texture, the maximum pole intensity of basal in ER sample is weaker. ER sheet has higher yield strength and elongation compared to WR sheet. As a promising technique, electropulsing rolling can be used to improve the microstructure and mechanical properties of materials.
文摘Specially designed wire-drawing equipment with multiple electropulse generator was introduced. The influences of multiple electropulses processing on the microstructure and properties of the hardened steel wire were investigated. Samples treated by direct current under the same current density as that in multiple electropulses processing were carried out for contrast analysis. The results show that the optimized parameters of multiple electropulses processing will be facilitated to increase the nucleation rate and slow down the growth rate of recrystallized grains. Consequently, massive superfine grains of micro and sub-micro scale could be found in the steel wire. Thereby, the elongation was significantly enhanced with a relatively small strength reduction in comparison with as-received cold-drawing steel wires. Outstanding mechanical properties of steel wire were obtained.
基金Project(2010CB631203)supported by National Basic Research Program of ChinaProject(51001021)supported by the National Natural Science Foundation of ChinaProjects(20100042120008,20100042110006)supported by the PhD Programs Foundation of Ministry of Education of China
文摘Electropulsing treatment(EPT) was performed on a nickel base corrosion resistant alloy during aging.The effect of EPT on the microstructure and corrosion resistance of the alloy and the mechanisms were investigated.The results show that the intergranular corrosion resistance can be improved substantially without the degradation of mechanical properties of the alloy by EPT.The EPT has an effect of enhancing the interface diffusion rate of the alloying element,which is higher than the body diffusion rate.And thus discontinuous precipitation of M23C6 type carbides appears at the grain boundary in the alloy by EPT,which decreases the depletion extent of the alloying elements at the grain boundary substantially.As a result,the intergranular corrosion resistance of the alloy can be improved by the EPT without any degradation of mechanical properties.
基金financially supported by the Fundamental Research Funds for the National Key R&D Program of China(No.2017YFB0306300)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20200185)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University(No.2020zzts098)the National Natural Science Foundation of China(Nos.19055551,51675538 and 51601060)。
文摘Studies show that the proper solid solution treatment(SST)is a key step in the precipitation strengthening of AA7150 Al alloy.Despite the superior characteristics of the fully dissolved phase,it has major drawbacks,including high consumption of energy and low efficiency.Recently,electropulsing treatment(EPT)has been proposed to study dissolved precipitations and modify microstructures of AA7150 Al alloy faster than conventional SST.Experiments have been conducted in the present article,and the obtained results show that EPT can promote the rapid dissolution of theη’phase at relatively low temperatures in only 20 s.Meanwhile,the strength and ductility of electropulsed samples decrease drastically.Compared with conventional SST,EPT accelerates recrystallization and obtains relatively fine grains after 20 and 50 s electric pulses.Moreover,as the EPT time increases,the corresponding non-uniform local heating and the electron force promote dislocation generation and annihilation.
基金supported financially by the National Natural Science Foundation of China(Nos.U1710118,U1810122,51504162 and 51601123)the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(2018)+1 种基金the Natural Science Foundation of Shanxi Province(No.201801D221139)the Research Project Supported by Shanxi Scholarship Council of China(No.2016-029)。
文摘A 0.66 mm-diameter AZ31 alloy wire with ultimate tensile strength of 400 MPa and elongation of 28.5%was successfully prepared via the combination of cold-drawing and electropulsing treatment processing(EPT).Microstructure observation showed that the grain size of EPTed samples was refined to about 1μm and the basal texture strength with maxima texture index was weakened to 7.18.EPT can significantly accelerate recrystallization by enhancing the mobility of dislocation and atomic diffusion due to the coupling of the thermal and athermal effects.Finally,uniform ultrafine-grained structure was obtained in the EPTed samples by static recrystallization completed in a very short time(30 s)at relatively low temperature(433 K).
基金the financial supports by the National Key R&D Program of China(No.2017YFB0306300)the National Natural Science Foundation of China(Nos.51601060,51675538).
文摘The influence of electropulsing on the creep behaviour,strength,and microstructure of an Al−Cu−Li alloy during creep ageing was investigated.Electropulsing assisted creep ageing(ECA)and conventional creep ageing(CCA)were carried out under various stress levels and time conditions.Applying electropulsing results in a noteworthy change of creep behaviour,including a variation in creep curves,an increased creep rate in early stage,and an improved creep strain.The ECA specimen experiences a shorter time to the peak strength,and an increase in elongation by~17.4% without loss of the peak-aged strength compared with CCA specimen.The ultrafine nano-size subgrains are observed to form under electropulsing,which can result in an increased creep strain by increasing grain-boundary sliding.The enhancement of both dislocation interactions and solute diffusion under electropulsing is considered as a primary cause of disappearance of a platform stage during early creep ageing.Some of T1 precipitates around the grain boundary are observed in the peak ECA sample,resulting in an occurrence of transgranular fracture,which is further responsible for an increased elongation of the ECA specimen.
文摘The specimens cut from the cold-rolled pure titanium sheet at 0°,45°and 90°to the rolling direction were treated by high density electropulsing(maximum current density J=(7.22-7.96)×10^(3)A/mm^(2),pulse period t_(p)=110μs).The mechanical properties and microstructures of the cold-rolled,electropulsed and conventional annealed commercially pure titanium sheet were examined by using uniaxial tension test machine and optical microscope(OM),respectively.The results show that the deformation behavior of the electropulsed pure titanium sheet is significantly different from that of conventional annealed pure titanium sheet.The difference of the mechanical properties between the 0°,45°and 90°direction specimens is almost diminished.It is mainly due to the increase in dislocation mobility and formation of lamellar microstructure after the electropulsing.
文摘The magneto-impedance(MI) effect in amorphous and current annealed Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 wires has been measured to investigate the influence of DC annealing,highcurrent-density electropulsing annealing and tensile stress applied during annealing process.The results showed that the MI of DC annealed sample exhibits a sharp maximum.The Maximum MI ratio of 60%was observed in the sample of high-current-density electropulsing annealed under applied tensile stress.
基金supported in part by National Natural Science Foundation of China(U1710118,U1810122,51504162 and 51601123)Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(2018)+1 种基金the Natural Science Foundation of Shanxi Province(201801D221139)Research Project Supported by Shanxi Scholarship Council of China(2016029)
文摘AZ61 Mg alloy with homogeneous refined microstructure and exceptional mechanical properties was obtained by the combined technology of equal-channel angular pressing(ECAP)and electropulsing treatment(EPT)in this paper.Based on an ECAP die with an intersection angle of 160,the lower temperature is particularly adapted for AZ61 alloy to be deformed,in which accompanied by high accumulated defects density.The recrystallization of EPTed samples during different stages indicated that the recrystallization behavior of the deformed Mg alloy was mainly affected by the processing time and duration of EPT.Compared to those of the as-received samples,the average grain size of the EPTed samples was refined from 89μm to 1.0μm,accordingly the yields stress(YS)and ultimate tensile strength(UTS)were increased from 100 MPa and 260 MPa to 330 MPa and 448 MPa,respectively.The mechanisms of microstructure transformation and the reinforced mechanical properties were analyzed based on the strain of single ECAP,cumulative storage energy and the athermal effect of EPT.
基金supported by the National Natural Science Foundation of China(Grants No.51501196,51975552 and 50711007)the IMR foundation for“Young merit scholars”+1 种基金the Youth Innovation Promotion Association CAS(No.2017235)the LiaoNing Revitalization Talents Program under Grant No.XLYC1808027。
文摘Effects of electropulsing treatment(EPT)on the microstructural evolution and mechanical properties of a cold-rolled 316 L austenitic stainless steel with nano-lamellar structure were investigated.The EPT experiments were carried out with the electric current direction along the rolling direction(RD)and the transverse direction(TD)of the samples,respectively.Significant anisotropic electroplastic effects for the RD and TD specimens,i.e.,reduced hardness/strength and enhanced ductility,were obtained owing to the different recrystallization behaviors of the RD and TD specimens during EPT.The RD specimens after EPT with larger recrystallized grain size and higher volume fraction of recrystallization show lower strength and higher elongation than that of the TD specimens.The main reason might be attributed to the change of the current direction in the two kinds of samples,which results in the different sensitivity of the microstructures to thermal and athermal effects during EPT.