期刊文献+
共找到990篇文章
< 1 2 50 >
每页显示 20 50 100
Valence electron structures dependences of structural stability and properties of REX_(3)(RE=rare earth;X=In,Tl)and RE(In,Co)_(3) alloys
1
作者 Boyang Li Yongquan Guo +2 位作者 Yi-Chen Feng Xinze Wang Wei Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期331-339,共9页
Intermetallic compounds REIn_(3)(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobal... Intermetallic compounds REIn_(3)(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobalt diluted alloys exhibit the ferromagnetic half-metallic characteristics at room temperature.In this study,an empirical electron theory(EET)is employed to investigate systemically the valence electronic structure,the thermal and magnetic properties of REX_(3) and their cobalt diluted alloys for revealing the mechanism of physical properties.The calculated bond length,melting point,and magnetic moment match the experimental ones very well.The study reveals that structural stability and physical properties of REX_(3) and their cobalt dilute alloys are strongly related to their valence electron structures.It is suggested that the structural stability and cohesive energy depend upon the covalent electron,the melting point is modulated by covalent electron pair,and the magnetic moment is originated from 3d magnetic electron.The ferromagnetic characteristics of Co-diluted REIn3 alloys is originated from the introduction of strong ferromagnetic Co atom,but,a competition is caused between the electron transition from valence electron to magnetic electron on d orbit and its reversal electron transformation with increasing the content of cobalt,which results in the formations of diluted magnetic Gd(In,Co)_(3) alloy with minor amount of cobalt and strong magnetic Nd(In,Co)_(3) alloy with doping more Co atoms. 展开更多
关键词 REX_(3) cobalt dilute alloy valence electron structures empirical electron theory MOMENT
原文传递
Effect of Valence Electron Structure on Temper Process and Hardness of the Supersaturated Carburized Layer 被引量:3
2
作者 石巨岩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期127-134,共8页
By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and t... By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and the temper temperature is established. The result indicates that the hardness goes down firstly, then up and down, just like a wave consistent with the temperature increase. A secondary hardening peak appears at 570 ℃ or so. Based on Empirical Election Theory (EET) of Solids and Molecules, the valence electron structures (VESs) containing α-Fe-C, α-Fe-C-Me segregation structure units and carbide are calculated. The laws of temper process and hardness change with the temper temperature are explained, and the fact that reconstruction of θ-Fe3C is prior to that of special carbide at high tempering is analyzed with the phase structure formation factor, S, being taken into consideration. Therefore, the laws of temper process and hardness change of supersaturated carburized layer at different temper temperature can be traced back to valence electron structure (VES) level of alloy phase. 展开更多
关键词 supersaturated carburizing steel temper process valence electron structure HARDNESS
原文传递
Tuning the electron structure enables the NiZn alloy for CO_(2) electroreduction to formate 被引量:2
3
作者 Xiaodong Zhang Yajiao Zhou +9 位作者 Hang Zhang Huang Jing Wei Li Kang Liu Hongmei Li Hao Pan Junhua Hu Junwei Fu Shanyong Chen Min Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期625-632,I0015,共9页
Formate is an important liquid chemical,which can be produced by electrocatalytic carbon dioxide reduction reaction(CO_(2) RR).Most of the metal catalysts for CO_(2) RR to formate are toxic or noble metals,such as Cd,... Formate is an important liquid chemical,which can be produced by electrocatalytic carbon dioxide reduction reaction(CO_(2) RR).Most of the metal catalysts for CO_(2) RR to formate are toxic or noble metals,such as Cd,Hg,Pb and Pd,leading to the environmental pollution or increased production costs.Herein,we develop an environmentally friendly and low-cost NiZn alloy catalyst for CO_(2) RR to formate.The X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM) confirm the alloy structure of the prepared NiZn catalyst. As for a catalyst for CO_(2) RR,the NiZn alloy exhibits the FE_(HCOO)^(-)(Faraday efficiency of HCOO^(-)) of 36±0.7% at-0.9 V vs.RHE in 0.1 M KHCO_(3), and remarkable stability for 40,000 s at-0.8,-0.9,-1.0 and-1.1 V vs.RHE,respectively.Theoretical calculation results indicate that the NiZn alloy exhibits the middle valence electron structure between the Zn and Ni metal,resulting in the favorable pathway for HCOOH formation but unfavorable for the hydrogen evolution reaction and CO production.The Ultraviolet Photoelectron Spectroscopy results verify the modulated valence electron structure for NiZn alloy as compared to Ni and Zn,consistent with the theoretical calculation results.This work provides new insights into design of alloy catalysts for CO_(2) RR to formate. 展开更多
关键词 ELECTROCATALYSIS CO_(2)reduction reaction FORMATE NiZn alloy Valence electron structure
在线阅读 下载PDF
Calculations of stability of alloyed cementite from valance electron structure 被引量:1
4
作者 王红军 刘宏玉 +4 位作者 刘礼 曾晓宇 卢建夺 林冲 徐红兵 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期259-269,共11页
Based on the empirical electronic theory of solids and molecules (EET), the actual model for unit cell of cementite (0-FeaC) was built and the valence electron structures (VES) of cementite with specified site a... Based on the empirical electronic theory of solids and molecules (EET), the actual model for unit cell of cementite (0-FeaC) was built and the valence electron structures (VES) of cementite with specified site and a number of Fe atoms substituted by alloying atoms of M ( M=Cr, V, W, Mo, Mn ) were computed by statistical method. By defining P as the stability factor, the stability of alloyed cementite with different numbers and sites of Fe atoms substituted by M was calculated. Calculation results show that the density of lattice electrons, the symmetry of distribution of covalent electron pairs and bond energy have huge influence on the stability of alloyed cementite. It is more stable as M substitutes for FeE than for Fe1. The alloyed cementite is the most stable when Cr, Mo, W and V substitute for 2 atoms of Fe2 at the sites of Nos. 2 and 3 (or No. 6 and No. 7). The stability of alloyed cementite decreases gradually as being substitutional doped by W, Cr, V, Mo and Mn. 展开更多
关键词 valence electron structure alloyed cementite stability density of lattice electrons symmetry of bonds bond energy
在线阅读 下载PDF
A Valence Electron Structure Criterion of Ionic Conductivity of Sr- and Mg-doped LaGaO_3 Ceramics 被引量:1
5
作者 Min SHI Ning LIU +3 位作者 Yudong XU Can WANG Yupeng YUAN P.Majewski 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期215-219,共5页
The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was ... The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was proposed, i.e. the 1/(nAnB) increases with increasing the ionic conductivity when x or y〈20% (in molar fraction). 展开更多
关键词 Empirical electron theory of solids and molecules (EET) Valence electron structure LaGaO3 ceramics Ionic conductivity
在线阅读 下载PDF
Analysis of Valence Electron Structure of RE in Solid Solution in Medium and Low Carbon Steel
6
作者 朱莹光 刘艳 +1 位作者 刘志林 刘伟东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第2期282-287,共6页
According to EET theory, the valence electron structures of RE in the solid solution of austenite, pearlite and martensite were calculated. The influence of RE in solid solution on phase transformation of pearlite and... According to EET theory, the valence electron structures of RE in the solid solution of austenite, pearlite and martensite were calculated. The influence of RE in solid solution on phase transformation of pearlite and recrystallization of martensite was explained by the valence electron structure data of phases. Calculating results indicate that C element is favorite to enhance the number of RE in the solid solution. RE in the solute solution shortens the incubation period of proeutectoid ferrite, increases its quantity and carbon content, decreases the quantity of pearlite and thickness of its lamellas and lamellar spacing, then the strength and hardness of pearlite are improved and granular pearlite can be obtained. RE dissolved in martensite intensifies martensite, enhances tempering stability of martensite, increases its recrystallization temperature and prolongs the holding time needed during tempering. 展开更多
关键词 metal materials valence electron structure phase transformation RECRYSTALLIZATION rare earths
在线阅读 下载PDF
Study Segregation of Alloying Elements in Continuous Casting Slab with Valence Electron Structure
7
作者 YahLIU ZhilinLIU +1 位作者 ChengweiZHANG YingguangZHU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期421-425,共5页
By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) w... By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified. 展开更多
关键词 Valence electron structure Continuous casting slab Centerline segregation Rare-earth elements.
在线阅读 下载PDF
Valence electron structure and hydrogen storage property of LaNi_-4Co 被引量:2
8
作者 Lei Zhang Shi-Chun Li 《Rare Metals》 SCIE EI CAS CSCD 2015年第4期259-266,共8页
In the present study, two models of atom occupation in LaNi4Co were put forward and corresponding valence electron structures (VESs) of these two models were investigated according to empirical electron theory (EET... In the present study, two models of atom occupation in LaNi4Co were put forward and corresponding valence electron structures (VESs) of these two models were investigated according to empirical electron theory (EET) of solids and molecules. Results demonstrate that the VES-concerned hardness factor (FH) of LaNi4Co is lower than that of LaNi5, so LaNi4Co has lower hardness, higher plasticity and improved anti-pulverization ability. In the mean time, the difference of the equilibrium hydrogen pressure between LaNiaCo and LaNi5 was analyzed in the electronic level. The analysis shows that the strength of the weakest bond net in octahedron lattice interstices of LaNi4Co is much lower than that in LaNis; consequently, LaNi4Co's bond net easily deforms to accommodate hydrogen so that LaNi4Co has lower equilibrium hydrogen pressure in comparison with LaNis. The results can provide some theory guide on the design of hydrogen storage alloys. 展开更多
关键词 ALLOYS Computer modeling and simulation electronic structure Mechanical properties
原文传递
Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS-(A=C14H10 or Anthracene):Electron Structure,Spin-Orbit Coupling of APS,and Dipole-Bound State of APS-
9
作者 Qin-qin Yuan Zheng Yang +6 位作者 Ren-zhong Li Wesley J.Transue Zhi-peng Li LingJiang Niranjan Govinde Christopher C.Cumminsa Xue-Bin Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期463-470,614,共9页
Gaseous dibenzo-7-phosphanorbornadiene P-sulfide anions APS (A C14H10 or anthracene) were generated via electrospray ionization, and characterized by magnetic-bottle photoelec- tron spectroscopy, velocity-map imagi... Gaseous dibenzo-7-phosphanorbornadiene P-sulfide anions APS (A C14H10 or anthracene) were generated via electrospray ionization, and characterized by magnetic-bottle photoelec- tron spectroscopy, velocity-map imaging (VMI) photoelectron spectroscopy, and quantum chemical calculations. The electron affinity (EA) and spin-orbit (SO) splitting of the APS" radical are determined from the photoelectron spectra and Franck-Condon factor simulations to be EA (2.62-4-0.05) eV and SO splitting (43-4-7) meV. VMI photoelectron images show strong and sharp peaks near the detachment threshold with an identical electron kinetic energy (eKE) of 17.9 meV at three different detachment wavelengths, which are therefore assigned to autodetachment from dipole-bound anion states. The B3LYP/6-31++G(d,p) calculations indicate APS has a dipole moment of 3.31 Debye, large enough to support a dipole-bound electron. 展开更多
关键词 Dibenzo-7-phosphanorbornadiene P-sulfide electronic structure Spin-orbitcoupling Dipole-bound state VMI photoelectron spectroscopy
在线阅读 下载PDF
Optimizing electronic structure through point defect engineering for enhanced electrocatalytic energy conversion
10
作者 Wei Ma Jiahao Yao +6 位作者 Fang Xie Xinqi Wang Hao Wan Xiangjian Shen Lili Zhang Menggai Jiao Zhen Zhou 《Green Energy & Environment》 SCIE EI CAS 2025年第1期109-131,共23页
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e... Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials. 展开更多
关键词 Point defect engineering DOPING VACANCY ELECTROCATALYSIS electronic structure
在线阅读 下载PDF
Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide:On the Origin of Photocatalytic Oxygen Evolution Activity
11
作者 Yi-Qing Wang Zhi Lin +1 位作者 Ming-Tao Li Shao-Hua Shen 《电化学(中英文)》 北大核心 2025年第5期28-36,共9页
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her... Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution. 展开更多
关键词 Photocatalytic oxygen evolution Polymeric perylene diimide Atomic structure electronic structure Reaction pathway
在线阅读 下载PDF
The Effect of Carrier Doping and Thickness on the Electronic Structures of La_(3)Ni_(2)O_(7)Thin Films
12
作者 Haoliang Shi Zihao Huo +4 位作者 Guanlin Li Hao Ma Tian Cui Daoxin Yao Defang Duan 《Chinese Physics Letters》 2025年第8期201-229,共29页
The discovery of high-temperature superconductivity in bilayer nickelate La_(3)Ni_(2)O_(7)under high-pressure conditions has spurred extensive efforts to stabilize superconductivity at ambient pressure.Recently,the re... The discovery of high-temperature superconductivity in bilayer nickelate La_(3)Ni_(2)O_(7)under high-pressure conditions has spurred extensive efforts to stabilize superconductivity at ambient pressure.Recently,the realization of superconductivity in compressively strained La_(3)Ni_(2)O_(7)thin films grown on the SrLaAlO_(4)substrates,with a T_(c)exceeding 40 K,represents a significant step toward this goal.Here,we investigate the influence of film thickness and carrier doping on the electronic structure of La_(3)Ni_(2)O_(7)thin films,ranging from 0.5 to 3 unit cells,using first-principles calculations.For a 2 unit-cell film with an optimal doping concentration of 0.3 hole per formula unit(0.15 hole/Ni),the Ni-d_(z^(2))interlayer bonding state crosses the Fermi level,resulting in the formation ofγpockets at the Fermi surface.These findings align with angle-resolved photoemission spectroscopy experimental data.Our results provide theoretical validation for the recent experimental discovery of ambient-pressure superconductivity in La_(3)Ni_(2)O_(7)thin films and underscore the significant impact of film thickness and carrier doping on electronic property modulation. 展开更多
关键词 bilayer nickelate film thickness electronic structure l electronic structure la ni o thin films carrier doping stabilize superconductivity SUPERCONDUCTIVITY
原文传递
Electronic Structure Computations and Optical Spectroscopy Studies of ScNiBi and YNiBi Compounds
13
作者 Yury V.Knyazev Semyon T.Baidak +1 位作者 Yury I.Kuz’min Alexey V.Lukoyanov 《Computers, Materials & Continua》 2025年第6期4085-4095,共11页
Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density f... Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density functional theory accounting for spin-orbit coupling.These compounds are computed to be semiconductors.The calculated gap values make ScNiBi and YNiBi valid for thermoelectric and optoelectronic applications and as selective filters.In ScNiBi and YNiBi,an intense peak at the energy of−2 eV is composed of theNi 3d states in the conduction band,and the valence band mostly contains these states with some contributions from the Bi 6p and Sc 3d or Y 4d electronic states.These states participate in the formation of the indirect gap of 0.16 eV(ScNiBi)and 0.18 eV(YNiBi).Within the spectral ellipsometry technique in the interval 0.22–15μm of wavelength,the optical functions of materials are studied,and their dispersion features are revealed.A good matching of the experimental and modeled optical conductivity spectra allowed us to analyze orbital contributions.The abnormally low optical absorption observed in the low-energy region of the spectrum is referred to as the results of band calculations indicating a small density of electronic states near the Fermi energy of these complex materials. 展开更多
关键词 Computational physics first-principles calculations electronic structure band gap excited states optical properties semiconductors complex materials optoelectronic applications
在线阅读 下载PDF
Electron Microscopy and Spectroscopy Investigation of Atomic, Electronic, and Phonon Structures of NdNiO_(2)/SrTiO_(3) Interface
14
作者 Yuan Yin Mei Wu +9 位作者 Xiang Ding Peiyi He Qize Li Xiaowen Zhang Ruixue Zhu Ruilin Mao Xiaoyue Gao Ruochen Shi Liang Qiao Peng Gao 《Chinese Physics Letters》 2025年第4期130-141,共12页
The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus... The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface. 展开更多
关键词 atomic structure phonon structure electron microscopy electronic structure SPECTROSCOPY NdNiO SrTiO interface thin films superconducting cupratesprovide
原文传递
Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion
15
作者 Xinyu Tian Jiaxiang Guo +4 位作者 Zeyi Li Shihou Sheng Tianyu Zhang Xianfei Li Chuandong Dou 《Chinese Chemical Letters》 2025年第1期306-311,共6页
Diradicaloid polycyclic hydrocarbons(PHs)own unique open-shell electronic structures and exhibit potential utility in the fields of organic electronics and spintronics.Herein,we disclose precise fusion of B/O-heterocy... Diradicaloid polycyclic hydrocarbons(PHs)own unique open-shell electronic structures and exhibit potential utility in the fields of organic electronics and spintronics.Herein,we disclose precise fusion of B/O-heterocycles onto PHs for control over their electronic structures and diradical properties.We designed and synthesized four B/O-containing diradicaloid isomers that feature the fluoreno[3,2-b]fluorene and fluoreno[2,1-a]fluoreneπ-skeletons,respectively.The precise B/O-heterocycle fusion modes along with the changed conjugation patterns lead to their modulated electronic structures and properties,such as diradical and aromatic structures,energy levels and band gaps,as well as magnetic,electrochemical and photophysical properties.Notably,the mode A may decrease the open-shell extent,whereas the mode B can enhance the diradical nature,leading to their well-tuned diradical characters in the range of0.46-0.70.Moreover,the mode A stabilizes the LUMOs and the mode B obviously increases the HOMO levels,which are remarkably contributed by the B and O atoms,respectively,further giving rise to the decreased band gaps and redshifted absorptions.This study clearly illustrates the electronic effects of B/O-heterocycle fusion on PHs and gains insight into B/O-type organic diradicaloids.These findings will provide an important guideline for the design of more fascinating heteroatom-containing diradicaloids. 展开更多
关键词 Organic diradicaloids Boron electronic structure Quinoidal conjugation AROMATICITY
原文传递
Modulated FeWO_(4)electronic structure via P doping on nitrogen-doped porous carbon for improved oxygen reduction activity in zinc-air batteries
16
作者 Yue Gong Dai-Jie Deng +5 位作者 Huan Wang Jian-Chun Wu Lin-Hua Zhu Cheng Yan He-Nan Li Li Xu 《Rare Metals》 2025年第1期240-252,共13页
As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)poss... As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)possesses favorable electrochemical properties and thermodynamic stability,its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate,limiting the ORR catalytic activity.In this work,the electronic structure of FeWO_(4)is significantly modulated by introducing phosphorus(P)atoms with abundant valence electrons.The P doping can adjust the electronic structure of FeWO_(4)and then optimize oxygen-containing intermediates'absorption/desorption efficiency to achieve improved ORR activity.Furthermore,the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate(P-FeWO_(4)/PNC).The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P-FeWO_(4)/PNC surface and serves as mass transport channels for reactants and intermediates.The P-FeWO_(4)/PNC demonstrates ORR performance(E1/2=0.86 V vs.RHE).Furthermore,the zinc-air batteries incorporating the P-FeWO_(4)/PNC composite demonstrate an increased peak power density(172.2 mW·cm^(-2)),high specific capacity(810.1 mAh·g^(-1)),and sustained long-term cycling stability lasting up to 240 h.This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts,but also guides their utilization in zinc-air batteries. 展开更多
关键词 Oxygen reduction reaction FeWO_(4) P doping electronic structure Zinc-air batteries
原文传递
Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production
17
作者 Hongyang Li Yue Liu +6 位作者 Xiuwen Wang Haijing Yan Guimin Wang Dongxu Wang Yilong Wang Shuo Yang Yanqing Jiao 《Chinese Chemical Letters》 2025年第6期752-758,共7页
Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic ... Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts. 展开更多
关键词 Morphology engineering electronic structure regulation Metal nitrides Hydogen evolution reaction Urea oxidation reaction
原文传递
Manipulating local electronic and interfacial structure of O_(3)-type layered oxides for high-rate sodium-ion battery cathodes
18
作者 Yong Li Lanlan Lei +10 位作者 Jie Hou Guangming Wang Qinhui Ren Qinhao Shi Juan Wang Liping Chen Guannan Zu Shuyue Li Jianghua Wu Yunhua Xu Yufeng Zhao 《Journal of Energy Chemistry》 2025年第6期224-232,I0006,共10页
03-type layered oxide serves as dominant components in sodium ion batteries;however,the unstable electronic structure between transition metal and oxygen inevitably induces framework instability and severe kinetic hin... 03-type layered oxide serves as dominant components in sodium ion batteries;however,the unstable electronic structure between transition metal and oxygen inevitably induces framework instability and severe kinetic hindrance.In this study,a two-in-one approach to synergistically modulate the local electro nic and interfacial structure of NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)by Ce modification is proposed.We present an indepth study to reveal the strong-covalent Ce-O bonds,which make local charge around oxygen more negative,enhance O 2p-Mn 3d hybridization,and preserve the octahedral structural integrity.This modification tailors local electronic structure between the octahedral metal center and oxygen,thus enhancing reversibility of 03-P3-03 phase transition and expanding Na+octahedral-tetrahedral-octahedral transport channel.Additionally,the nanoscale perovskite layer induced by Ce element is in favor of minimizing interfacial side reaction as well as enhancing Na^(+)diffusivity.As a result,the designed 03-NaNi_(0.305)Fe_(0.33)Mn_(0.33)Ce_(0.025)O_(2)material delivers an exceptionally low volume variation,an ultrahigh rate capacity of 76.9 mA h g^(-1)at 10 C,and remarkable cycling life over 250 cycles with capacity retention of 80% at 5 C. 展开更多
关键词 Sodium ion batteries O3-type layered oxide Kinetic hindrance Phase transition electronic structure
在线阅读 下载PDF
Electronic structure and carrier mobility of BSb nanotubes
19
作者 Lantian Xue Chennan Song +4 位作者 Miaomiao Jian Qiang Xu Yuhao Fu Pengyue Gao Yu Xie 《Chinese Physics B》 2025年第3期183-188,共6页
High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properti... High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properties of single-walled boron antimonide(BSb)nanotubes using first-principles calculations.We observed that rolling the hexagonal boron antimonide monolayer into armchair(ANT)and zigzag(ZNT)nanotubes induces compression and wrinkling effects,significantly modifying the band structures and carrier mobilities through band folding andπ^(*)-σ^(*)hybridization.As the chiral index increases,the band gap and carrier mobility of ANTs decrease monotonically,where electron mobility consistently exceeds hole mobility.In contrast,ZNTs exhibit a more complex trend:the band gap first increases and then decreases,and the carrier mobility displays oscillatory behavior.In particular,both ANTs and ZNTs could exhibit significantly higher carrier mobilities compared to hexagonal monolayer and zinc-blende BSb,reaching 10^(-3)-10^(-7) cm^(-2)·V^(-1)·s^(-1).Our findings highlight strong curvature-induced modifications in the electronic properties of single-walled BSb nanotubes,demonstrating the latter as a promising candidate for high-performance electronic devices. 展开更多
关键词 ab initio calculations NANOTUBES electronic structure carrier mobility
原文传递
Electronic structure and disorder effect of La_(3)Ni_(2)O_(7)superconductor
20
作者 Yuxin Wang Yi Zhang Kun Jiang 《Chinese Physics B》 2025年第4期63-69,共7页
Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilaye... Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilayer La_(3)Ni_(2)O_(7)electronic structure.Applying the hybrid exchange–correlation functionals,we obtain a more accurate electronic structure of La_(3)Ni_(2)O_(7)at its high-pressure phase,where the bonding dz2 band is below the Fermi level owing to the apical oxygen.The symmetry properties of this electronic structure and its corresponding tight-binding model are further analyzed.We find that the antisymmetric part is highly entangled,leading to a minimal nearly degenerate two-orbital model.Then,the apical oxygen vacancies effect is studied using the dynamical cluster approximation.This disorder effect strongly destroys the antisymmetric b Fermi surface,leading to the possible disappearance of superconductivity. 展开更多
关键词 electronic structure oxygen vacancies disorder dynamical cluster approximation bilayer superconducting nickelate
原文传递
上一页 1 2 50 下一页 到第
使用帮助 返回顶部