The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions for fractional charge quant...The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions for fractional charge quantization at the surface of a twisted and twigged electron quanta and above its surface, fractional Fourier transform and Hermite function for fractional charge quantization is developed. With energy eigen value equation for QHE and with energy operator on an eigenfunction of a twisted and twigged electron quanta, the corresponding eigenfunctions are normalized with Schrodinger’s quantum wave mechanical equation for electric scalar and magnetic potentials, respectively (QED behavior). The fractional electric and magnetic fields with their corresponding potentials for the quantized fractional states in semiconducting hereto structures are theoretically calculated. Such mathematical expressions are in good agreement with experimental results of Nobel Prize winning scientists Klitzing, Haroche, Peter and Gruebber. Our results can also explain the hybridized states of orbits with emphasis on sigma and pi bonding and their corresponding antibonding orbitals as a manifestation of electrophilic and nucleophilic chemical reactions.展开更多
With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier transform stretching, twisting and twigging of an electron quanta and waver strings of electron quanta, the mathematical exp...With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier transform stretching, twisting and twigging of an electron quanta and waver strings of electron quanta, the mathematical expressions for mesoscopic fractional electron fields in a cavity of viscous medium and the associated quantum dielectric susceptibility are developed. Agreement of this approach is experimentally evidenced on barite and Fanja site molecular sieves. These findings are in conformity with experimental results of 2012 Physics Nobel prize winning scientists, Serge Haroche and David J. Wineland especially for cavity quantum electro-dynamics electron and its associated mesoscopic electric fields. The mover electron quanta strings lead to warping of space and time following the behaviour of quantum electron dynamics.展开更多
文摘The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions for fractional charge quantization at the surface of a twisted and twigged electron quanta and above its surface, fractional Fourier transform and Hermite function for fractional charge quantization is developed. With energy eigen value equation for QHE and with energy operator on an eigenfunction of a twisted and twigged electron quanta, the corresponding eigenfunctions are normalized with Schrodinger’s quantum wave mechanical equation for electric scalar and magnetic potentials, respectively (QED behavior). The fractional electric and magnetic fields with their corresponding potentials for the quantized fractional states in semiconducting hereto structures are theoretically calculated. Such mathematical expressions are in good agreement with experimental results of Nobel Prize winning scientists Klitzing, Haroche, Peter and Gruebber. Our results can also explain the hybridized states of orbits with emphasis on sigma and pi bonding and their corresponding antibonding orbitals as a manifestation of electrophilic and nucleophilic chemical reactions.
文摘With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier transform stretching, twisting and twigging of an electron quanta and waver strings of electron quanta, the mathematical expressions for mesoscopic fractional electron fields in a cavity of viscous medium and the associated quantum dielectric susceptibility are developed. Agreement of this approach is experimentally evidenced on barite and Fanja site molecular sieves. These findings are in conformity with experimental results of 2012 Physics Nobel prize winning scientists, Serge Haroche and David J. Wineland especially for cavity quantum electro-dynamics electron and its associated mesoscopic electric fields. The mover electron quanta strings lead to warping of space and time following the behaviour of quantum electron dynamics.