Multi-layer riveted structures are widely applied to aircraft.During the service,cracks may appear within these structures due to stress concentration of the riveted holes.The guided wave monitoring has been proved to...Multi-layer riveted structures are widely applied to aircraft.During the service,cracks may appear within these structures due to stress concentration of the riveted holes.The guided wave monitoring has been proved to be an effective tool to deal with this problem.However,there is a lack of understanding of the wave propagation process across such kinds of structures.This study proposes a piezoelectric guided wave simulation method to reveal the propagation of guided waves in multi-layer riveted structures.Effects of pretension force,friction coefficient,and cracks that might influence wave characteristics are studied.The guided wave simulation data is compared with the experimental results and the results verify the simulation model.Then the guided wave propagation in a more complex long-beam butt joint structure is further simulated.展开更多
The characteristics of high-frequency(HF)electromagnetic(EM)wave propagation can be affected when EM waves propagate in the ionosphere.When ionospheric irregularities appear in the ionosphere,they can have a serious i...The characteristics of high-frequency(HF)electromagnetic(EM)wave propagation can be affected when EM waves propagate in the ionosphere.When ionospheric irregularities appear in the ionosphere,they can have a serious impact on the propagation of HF EM waves.In this study,the propagation of HF EM waves in ionospheric irregularities was investigated by numerical simulation.First,a twodimensional model of plasma bubbles was used to produce ionospheric irregularities in the ionosphere.A ray-tracing method was then utilized to simulate the propagation of HF radio waves in these ionospheric irregularities.Results showed that the propagation of HF radio waves in the ionosphere was more complex in ionospheric irregularities than without ionospheric irregularities.In addition,corresponding ionograms were synthesized by radio rays propagated in the ionosphere with these irregularities.The synthesized ionograms were then compared with the experimental ionograms recorded by an ionosonde.Results showed that spread F could be simulated on the ionograms when ionospheric irregularities occurred in the ionosphere.This result was consistent with the ionosonde observations.展开更多
This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was im...This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.展开更多
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, th...We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.展开更多
Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The ma...Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.展开更多
In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studi...In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.展开更多
The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The accel...The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.展开更多
Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tu...Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tubes. In order to study the effects of geometrical parameters on wrinkling of rectangular wave-guide tubes, a 3D-FE model for rotary-draw bending processes of thin-walled rectangular aluminum alloy wave-guide tubes was built based on the platform of ABA-QUS/Explicit, and its reliability was validated by experiments. Simulation and analysis of the influence laws of geometrical parameters on the wave heights of inner flange and side wrinkling were then carried out. The results show that inner flange wrinkling is the main wrinkling way to rectan- gular wave-guide tubes in rotary-draw bending processes, but side wrinkling cannot be neglected because side wrinkling is 2/3 of inner flange wrinkling when b and h are smaller. Inner flange and side wrinkling increase with increasing b and h; the influence of b on side wrinkling is larger than that of h, while both b and h affect inner flange wrinkling greatly. Inner flange and side wrinkling decrease with increasing R/h; the influence of h on inner flange and side wrinkling is larger than that of R.展开更多
A series of completely sealed standing-wave (SW) accelerator guides was developed and installed on 3,4, 6, 9 and 14 MeV home-made electron linacs for medical and industrial uses. In the development of these SW guides,...A series of completely sealed standing-wave (SW) accelerator guides was developed and installed on 3,4, 6, 9 and 14 MeV home-made electron linacs for medical and industrial uses. In the development of these SW guides, various subjects, including particle dynamics, microwave properties etc, were studied. The fsctors influencing the transverse motion were considered analytically and using a simulation code, TRSV. The problem of electron backbombardment in SW linac was analyzed by a 3-dimensional trace code, SB. Simultaneously decreasing the length of the first cavity and the injection voltage can reduced the electron backbombarding power. The code PPDW based on equivalent circuit theory was developed to analyze many microwave characteristics of arbitrarily composed coupled cavity chains. This research contributed to the successful development of the 3, 4, 6, 9 and 14MeV SW accelerator guides. For example, in the recently developed 14MeV SW guide, the beam passes smoothly through a 1.45 m long guide with a beamhole (diameter of 7 mm) without using a focusing solenoid.展开更多
With the development of virtual test,the computation of the effect of different weather conditions on electromagnetic wave propagation is required in many simulation systems. Firstly,this paper presents a unique point...With the development of virtual test,the computation of the effect of different weather conditions on electromagnetic wave propagation is required in many simulation systems. Firstly,this paper presents a unique point of view for computing the electromagnetic wave attenuation ratio under different weather conditions by means of an independent electromagnetic wave propagation component that can be directly implemented in virtual test, and is easy to configure and easy to reuse. We present an analysis of the principles of electromagnetic wave propagation and the algorithms designed for realization of various propagation models within the electromagnetic wave propagation component. Secondly,this paper presents a use-case analysis and outlines the design of the component,verifies the developed models under various weather conditions,and obtains equivalent values as those obtained theoretically. Finally,we build a virtual test system,verify the system in different weather conditions,and again obtain equivalent values to those obtained theoretically. The algorithms in the electromagnetic wave propagation component are developed in the C language, which substantially improves the computational speed,and meets the real-time requirements of the virtual testing platform.展开更多
Stealth technology plays an important role in modern military conflicts, especially when used in fighter jets. Since airfoil structures have a leading edge, inlet, and surface bulge that are easily detected by radar, ...Stealth technology plays an important role in modern military conflicts, especially when used in fighter jets. Since airfoil structures have a leading edge, inlet, and surface bulge that are easily detected by radar, it is necessary to study the stealth of these structures. In this study,we investigate structures coated with radionuclides to generate plasma. Using simulation and calculation methods, the attenuation of 0.1–10 GHz electromagnetic waves propagating in plasma was studied. The results showed that the attenuation of low-frequency electromagnetic waves is greater than that of high-frequency electromagnetic waves.The attenuation of 0.1–1 GHz electromagnetic waves is found to be less than-2.7 d B,-3.0 d B, and-15.6 d B at the airfoil leading edge, inlet, and surface bulge structures, respectively. We also found that the attenuation of electromagnetic waves with 0°-incidence is greater than that of waves with 10°, 20°, and 30° incidence angles.Additionally, the attenuation of electromagnetic waves decreases gradually as the incident angle increases.展开更多
By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold ...By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas.The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 10^(23) m^(-3) and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases(decreases) with the increase of the carrier wave frequency(vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude.This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.展开更多
The enhanced sensitivity of a guided mode biosensor is analyzed by employing double-layered porous silicon grating structures. The grating-coupled waveguide structure consists of two porous silicon grating layers with...The enhanced sensitivity of a guided mode biosensor is analyzed by employing double-layered porous silicon grating structures. The grating-coupled waveguide structure consists of two porous silicon grating layers with different refractive indices. simulations are carried out by changing the refractive index, which is due to the binding of biological molecules on the porous silicon pore can increase the refractive index of porous silicon. The numerical results show that this novel guided mode biosensor with a double-layered grating can provide not only a very high sensitivity but also a better reflectivity characteristic.展开更多
In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in...In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.展开更多
The rapid development of topological photonics has significantly facilitated the development of novel microwave and optical devices with richer electromagnetic properties. A stable and efficient guided wave is a neces...The rapid development of topological photonics has significantly facilitated the development of novel microwave and optical devices with richer electromagnetic properties. A stable and efficient guided wave is a necessary condition for optical information transmission and processing. However, most topological waveguides are confined at a domain wall around the interfaces and usually operate in a single-type topological mode, leading to low-throughput energy transmission over a single frequency band. Here, we propose, design, and experimentally demonstrate a novel planar microstrip heterostructure system based on topological LC circuits that supports a dual-type topological large-area waveguide state, and the system showcases tunable mode widths with different operating bandwidths. Inheriting from the pseudospin and valley topology, the topological large-area waveguides exhibit the pseudospin-and valley-locked properties at different frequency windows and have strong robustness against defects. Moreover, the large-area topological waveguide states of high-energy capacity channel intersections and beam expanders with topological pseudospin and valley mode width degrees of freedom are verified numerically and experimentally. We also show the distinct topological origins of large-area topological waveguide states that provide versatile signal routing paths by their intrinsic coupling properties. Our system provides an efficient scheme to realize the tunable width and the multi-mode bandwidth of topological waveguides, which can further promote the applications of multi-functional high-performance topological photonic integrated circuit systems in on-chip communication and signal processing.展开更多
In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California h...In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.展开更多
The development of multifunctional composites with desirable electromagnetic wave absorption and antibacterial performance for the medical field has aroused wide interest.In this work,SioC/Ag composites were successfu...The development of multifunctional composites with desirable electromagnetic wave absorption and antibacterial performance for the medical field has aroused wide interest.In this work,SioC/Ag composites were successfully fabricated via the liquid-phase method.When the filler content of SiOC/Ag-3 is 40wt%,SiOC/Ag-3exhibits excellent electromagnetic wave absorption performance,achieving a minimum reflection loss(RL_(min))value of-58.03 dB with a matching thickness of only 2.82 mm.The superior electromagnetic wave absorption performance is attributed to(i)multiple reflections,(ii)conductive loss,and(iii)interfacial polarization loss.In addition,the radar cross-section(RCS)simulation indicates that all RCS values of the perfect electric conductor(PEC)with the SioC/Ag-3 coating are below-20 dB-m^(2)across the incident angle range from-60°to 60,indicating strong radar stealth performance.Moreover,SiOC/Ag composites also achieve excellent antibacterial ability against E.coli and S.aureus through the generation of reactive oxygen species(ROS)under visible light irradiation.This work provides new insights into the design and development of bifunctional composites with electromagnetic wave absorption and antibacterial performancefor application in medical devices.展开更多
One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on sp...One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state.The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L,collision frequency ν,electron density n e and wave working frequency f in a φ 800 mm high temperature shock tube.In experiments,L is set to 4 cm and 38 cm.ν is 2 GHz and 15 GHz.n e is from 1×10 10 cm(-3) to 1×10 13 cm(-3),and f is set to 2,5,10,14.6 GHz,respectively.Meanwhile,Wentzel-Kramers-Brillouin(WKB) and finite-difference time-domain(FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results.It is found that when L is much larger than EM wavelength λ(thick sheath) and ν is large,the theoretical result is in good agreement with experimental one,when sheath thickness L is much larger than λ,while ν is relatively small,two theoretical results are obviously different from the experimental ones.It means that the existing theoretical model can not fully describe the contribution of ν.Furthermore,when L and λ are of the same order of magnitude(thin sheath),the experimental result is much smaller than the theoretical values,which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics.展开更多
文摘Multi-layer riveted structures are widely applied to aircraft.During the service,cracks may appear within these structures due to stress concentration of the riveted holes.The guided wave monitoring has been proved to be an effective tool to deal with this problem.However,there is a lack of understanding of the wave propagation process across such kinds of structures.This study proposes a piezoelectric guided wave simulation method to reveal the propagation of guided waves in multi-layer riveted structures.Effects of pretension force,friction coefficient,and cracks that might influence wave characteristics are studied.The guided wave simulation data is compared with the experimental results and the results verify the simulation model.Then the guided wave propagation in a more complex long-beam butt joint structure is further simulated.
基金We acknowledge the Institute of Earthquake Forecasting for providing the ionosonde data.This work was supported by the National Natural Science Foundation of China(no.41604133).
文摘The characteristics of high-frequency(HF)electromagnetic(EM)wave propagation can be affected when EM waves propagate in the ionosphere.When ionospheric irregularities appear in the ionosphere,they can have a serious impact on the propagation of HF EM waves.In this study,the propagation of HF EM waves in ionospheric irregularities was investigated by numerical simulation.First,a twodimensional model of plasma bubbles was used to produce ionospheric irregularities in the ionosphere.A ray-tracing method was then utilized to simulate the propagation of HF radio waves in these ionospheric irregularities.Results showed that the propagation of HF radio waves in the ionosphere was more complex in ionospheric irregularities than without ionospheric irregularities.In addition,corresponding ionograms were synthesized by radio rays propagated in the ionosphere with these irregularities.The synthesized ionograms were then compared with the experimental ionograms recorded by an ionosonde.Results showed that spread F could be simulated on the ionograms when ionospheric irregularities occurred in the ionosphere.This result was consistent with the ionosonde observations.
基金Supported by the Program for the National Natural Science Foundation of China (50534080) the New Century Excellent Talents in University of China (NCET-05-0602)+1 种基金 the Research Fund for the Doctoral Program of Higher Education of China (20060424001) the Research Award Fund for the Excellent Youth Scientist of Shandong Province(2006BS08006).
文摘This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.
基金Project supported by the National Natural Science Foundation of China(Grant No.11105002)the Open-end Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,China(Grant No.GZ1215)+1 种基金the Natural Science Foundation for University in Anhui Province of China(Grant No.KJ2013A106)the Doctoral Scientific Research Funds of Anhui University of Science and Technology,China
文摘We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.
基金Project supported by the National Natural Science Foundation of China(Grant No.51977044).
文摘Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.
基金Project(51265044)supported by the National Natural Science Foundation of ChinaProject(2013TT2028)supported by the Science and Technology Project of Hunan Province of ChinaProject(2012QK162)supported by the Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine of China
文摘In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.
基金supported by National Natural Science Foundation of China(Nos.51275029,51102007 and 11275007)
文摘The relativistic interaction of charged particle beams with a circularly polarized electromagnetic wave propagating along a uniform guiding magnetic field in the tunneling of a dielectric medium is analyzed. The acceleration mechanism and a self-consistent nonlinear theory are presented for the interaction of relativistic charged particle beams with electromagnetic waves. Numerical results show that the beam particle can be efficiently accelerated in the interaction process.
基金financial support of the National Natural Science Foundation of China (No. 50975235 and 50575184)the 111 Project(B08040)
文摘Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tubes. In order to study the effects of geometrical parameters on wrinkling of rectangular wave-guide tubes, a 3D-FE model for rotary-draw bending processes of thin-walled rectangular aluminum alloy wave-guide tubes was built based on the platform of ABA-QUS/Explicit, and its reliability was validated by experiments. Simulation and analysis of the influence laws of geometrical parameters on the wave heights of inner flange and side wrinkling were then carried out. The results show that inner flange wrinkling is the main wrinkling way to rectan- gular wave-guide tubes in rotary-draw bending processes, but side wrinkling cannot be neglected because side wrinkling is 2/3 of inner flange wrinkling when b and h are smaller. Inner flange and side wrinkling increase with increasing b and h; the influence of b on side wrinkling is larger than that of h, while both b and h affect inner flange wrinkling greatly. Inner flange and side wrinkling decrease with increasing R/h; the influence of h on inner flange and side wrinkling is larger than that of R.
文摘A series of completely sealed standing-wave (SW) accelerator guides was developed and installed on 3,4, 6, 9 and 14 MeV home-made electron linacs for medical and industrial uses. In the development of these SW guides, various subjects, including particle dynamics, microwave properties etc, were studied. The fsctors influencing the transverse motion were considered analytically and using a simulation code, TRSV. The problem of electron backbombardment in SW linac was analyzed by a 3-dimensional trace code, SB. Simultaneously decreasing the length of the first cavity and the injection voltage can reduced the electron backbombarding power. The code PPDW based on equivalent circuit theory was developed to analyze many microwave characteristics of arbitrarily composed coupled cavity chains. This research contributed to the successful development of the 3, 4, 6, 9 and 14MeV SW accelerator guides. For example, in the recently developed 14MeV SW guide, the beam passes smoothly through a 1.45 m long guide with a beamhole (diameter of 7 mm) without using a focusing solenoid.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201305)
文摘With the development of virtual test,the computation of the effect of different weather conditions on electromagnetic wave propagation is required in many simulation systems. Firstly,this paper presents a unique point of view for computing the electromagnetic wave attenuation ratio under different weather conditions by means of an independent electromagnetic wave propagation component that can be directly implemented in virtual test, and is easy to configure and easy to reuse. We present an analysis of the principles of electromagnetic wave propagation and the algorithms designed for realization of various propagation models within the electromagnetic wave propagation component. Secondly,this paper presents a use-case analysis and outlines the design of the component,verifies the developed models under various weather conditions,and obtains equivalent values as those obtained theoretically. Finally,we build a virtual test system,verify the system in different weather conditions,and again obtain equivalent values to those obtained theoretically. The algorithms in the electromagnetic wave propagation component are developed in the C language, which substantially improves the computational speed,and meets the real-time requirements of the virtual testing platform.
文摘Stealth technology plays an important role in modern military conflicts, especially when used in fighter jets. Since airfoil structures have a leading edge, inlet, and surface bulge that are easily detected by radar, it is necessary to study the stealth of these structures. In this study,we investigate structures coated with radionuclides to generate plasma. Using simulation and calculation methods, the attenuation of 0.1–10 GHz electromagnetic waves propagating in plasma was studied. The results showed that the attenuation of low-frequency electromagnetic waves is greater than that of high-frequency electromagnetic waves.The attenuation of 0.1–1 GHz electromagnetic waves is found to be less than-2.7 d B,-3.0 d B, and-15.6 d B at the airfoil leading edge, inlet, and surface bulge structures, respectively. We also found that the attenuation of electromagnetic waves with 0°-incidence is greater than that of waves with 10°, 20°, and 30° incidence angles.Additionally, the attenuation of electromagnetic waves decreases gradually as the incident angle increases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11765017,11865014,11847304,and 11764039)the Scientific Research Project of Gansu Higher Education,China(Grant No.2019B-034)the Science and Technology Project of Guizhou Province,China(Grant No.QiankeheLH-20177008)。
文摘By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas.The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 10^(23) m^(-3) and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases(decreases) with the increase of the carrier wave frequency(vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude.This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.
基金supported by the National Natural Science Foundation of China (No.60968002)the China Postdoctoral Science Foundation (No.2011M501501)
文摘The enhanced sensitivity of a guided mode biosensor is analyzed by employing double-layered porous silicon grating structures. The grating-coupled waveguide structure consists of two porous silicon grating layers with different refractive indices. simulations are carried out by changing the refractive index, which is due to the binding of biological molecules on the porous silicon pore can increase the refractive index of porous silicon. The numerical results show that this novel guided mode biosensor with a double-layered grating can provide not only a very high sensitivity but also a better reflectivity characteristic.
基金supported in part by the National Natural Science Foundation of China(Grant No.40974069)PetroChina Innovation Foundation(Grant No.2009D-5006-03-01)+1 种基金National Key Basic Research Development Program(GrantNo.2007CB209601)National Major Science and Technology Program(Grant Nos.2008ZX05010-002 and 2008ZX05024-001)
文摘In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.
基金National Key Research and Development Program of China (2021YFA1400602, 2020YFA0211402)National Natural Science Foundation of China (12474316,12274325)。
文摘The rapid development of topological photonics has significantly facilitated the development of novel microwave and optical devices with richer electromagnetic properties. A stable and efficient guided wave is a necessary condition for optical information transmission and processing. However, most topological waveguides are confined at a domain wall around the interfaces and usually operate in a single-type topological mode, leading to low-throughput energy transmission over a single frequency band. Here, we propose, design, and experimentally demonstrate a novel planar microstrip heterostructure system based on topological LC circuits that supports a dual-type topological large-area waveguide state, and the system showcases tunable mode widths with different operating bandwidths. Inheriting from the pseudospin and valley topology, the topological large-area waveguides exhibit the pseudospin-and valley-locked properties at different frequency windows and have strong robustness against defects. Moreover, the large-area topological waveguide states of high-energy capacity channel intersections and beam expanders with topological pseudospin and valley mode width degrees of freedom are verified numerically and experimentally. We also show the distinct topological origins of large-area topological waveguide states that provide versatile signal routing paths by their intrinsic coupling properties. Our system provides an efficient scheme to realize the tunable width and the multi-mode bandwidth of topological waveguides, which can further promote the applications of multi-functional high-performance topological photonic integrated circuit systems in on-chip communication and signal processing.
文摘In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.
基金supported by the Science Foundation of Jiangxi Provincial Department of Education(No.GJ2400915)the Early Career Youth Science and Technology Talent Training Project of Jiangxi Province(No.20244BCE52206)the National Natural Science Foundation of China(No.52360018).
文摘The development of multifunctional composites with desirable electromagnetic wave absorption and antibacterial performance for the medical field has aroused wide interest.In this work,SioC/Ag composites were successfully fabricated via the liquid-phase method.When the filler content of SiOC/Ag-3 is 40wt%,SiOC/Ag-3exhibits excellent electromagnetic wave absorption performance,achieving a minimum reflection loss(RL_(min))value of-58.03 dB with a matching thickness of only 2.82 mm.The superior electromagnetic wave absorption performance is attributed to(i)multiple reflections,(ii)conductive loss,and(iii)interfacial polarization loss.In addition,the radar cross-section(RCS)simulation indicates that all RCS values of the perfect electric conductor(PEC)with the SioC/Ag-3 coating are below-20 dB-m^(2)across the incident angle range from-60°to 60,indicating strong radar stealth performance.Moreover,SiOC/Ag composites also achieve excellent antibacterial ability against E.coli and S.aureus through the generation of reactive oxygen species(ROS)under visible light irradiation.This work provides new insights into the design and development of bifunctional composites with electromagnetic wave absorption and antibacterial performancefor application in medical devices.
文摘One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state.The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L,collision frequency ν,electron density n e and wave working frequency f in a φ 800 mm high temperature shock tube.In experiments,L is set to 4 cm and 38 cm.ν is 2 GHz and 15 GHz.n e is from 1×10 10 cm(-3) to 1×10 13 cm(-3),and f is set to 2,5,10,14.6 GHz,respectively.Meanwhile,Wentzel-Kramers-Brillouin(WKB) and finite-difference time-domain(FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results.It is found that when L is much larger than EM wavelength λ(thick sheath) and ν is large,the theoretical result is in good agreement with experimental one,when sheath thickness L is much larger than λ,while ν is relatively small,two theoretical results are obviously different from the experimental ones.It means that the existing theoretical model can not fully describe the contribution of ν.Furthermore,when L and λ are of the same order of magnitude(thin sheath),the experimental result is much smaller than the theoretical values,which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics.