The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the fir...The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the first member of the Longmaxi Formation to the Wufeng Formation at the bottom of the Longmaxi Formation.Given this correlation and based on the logging electrical data,this study employs the wide-field electromagnetic method(WFEM)to experimentally detect the electrical characteristics of the deep shale gas target layer in the Yibin area of southern Sichuan.The study also tests the regularity and effectiveness of the electrical parameters for evaluating favorable areas of shale gas reservoirs.In terms of specific operation,the structural pattern of the study area is implemented based on the wide-field electromagnetic results and geological data for comprehensive analysis,which identifies the main hidden faults and their influence range on low resistance.The detailed spatial distribution of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the target layer with a buried depth of 2000-5000m is described.This layer exhibits the characteristics of a continuous and stable distribution of organic shale.After verifying the subsequent electrical logging data,the electrical logging curve is found to be essentially consistent with the shape and trend of the wide-field resistivity curve.This consistency demonstrates the effectiveness of WFEM in detecting shale gas layers.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The Heishan geothermal area is positioned above the sole Yunnane-Tibet high-temperature geothermal belt,where huge geothermal energy resources are available.Utilizing the characteristics of large exploration depth,ext...The Heishan geothermal area is positioned above the sole Yunnane-Tibet high-temperature geothermal belt,where huge geothermal energy resources are available.Utilizing the characteristics of large exploration depth,extensive coverage,and high precision of the wide-field elec-tromagnetic method,four survey lines were deployed,totaling 29.8 km,to enable a comprehensive analysis of the granite structure and fault distribution.The results indicate that the rocks within the area can be vertically divided into a granite basement and a fractured layer.Moreover,three different zones of resistivity were identified:the granite basement zone has a resistivity range of 2500-20000 U m,whereas the compressional shear zone and the secondary fault zone have a resistivity range of 750-2500 U m,and the extensional fault zone and the main fault zone have resistivity values below 750 U m.The Heishan-Hejian fault and the fault zone formed during its right-lateral strike-slip process,as well as the controlled area of the Qianmaihe fault,are all favorable targets.Of these,the Qianmahe fault possesses a larger-scale heat-conducting and water-controlling structure.In addition,in the secondary fault-controlled area extending to the west,the zone between F2’and F4 exhibits renewed tectonic activity,suggesting a greater potential for geothermal resources.展开更多
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and f...Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic m...To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic method was proposed and applied to the ASP displacement monitoring test in a block of the Daqing Oilfield. In the process of ASP flooding, the electromagnetic field was measured many times. The data acquired before the ASP flooding were set as the background field, and the resistivity model was obtained by inversion. Then, the resistivity data were calibrated by logging data and the resistivity model was established. Finally, the range and front of ASP flooding were deduced with the residual gradient from the spatial domain first-order difference of the resistivity model. Production data of well groups in this block have proved that this method can work out the range and front of ASP flooding accurately, providing support for optimization of ASP flooding parameters.展开更多
In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct expl...In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.展开更多
The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect c...The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.展开更多
Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and time...Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.展开更多
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use...Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.展开更多
In order to study the distribution of shale gas reservoir in the Babaoshan Basin of Eastern Kunlun,the wide-field electromagnetic(WFEM)survey was carried out to obtain the spatial distribution characteristics of the u...In order to study the distribution of shale gas reservoir in the Babaoshan Basin of Eastern Kunlun,the wide-field electromagnetic(WFEM)survey was carried out to obtain the spatial distribution characteristics of the underground electrical volume resistivity based on the delineation of the scope of the Babaoshan Basin by regional gravity data.The basic characteristics of the basement,basin framework,and extension,vertical change,burial depth of dark mud shale in this area were identified,and the electrical distribution of the Babaoshan mud shale horizon was revealed,which has been proved to be a good geological effect by drilling.The exploration results show that the WFEM has significant effects on the exploration of shale gas occurrence strata,which meets the needs of investigation and evaluation of multi-layered and large-scale shale gas,and plays a good demonstration role in the follow-up shale gas exploration.展开更多
To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this meth...To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.展开更多
In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position inf...In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.展开更多
The transient electromagnetic(TEM)method becomes more urgent than ever for marine ex-ploration due to abundant resource reserves and the increasing undersea engineering construction activities,especially in the offsho...The transient electromagnetic(TEM)method becomes more urgent than ever for marine ex-ploration due to abundant resource reserves and the increasing undersea engineering construction activities,especially in the offshore exploration of mineral deposits such as Sanshandao gold mine.However,the re-search and application of TEM method in marine environment are still challenged by many problems.Such contradiction motivates our study on the coincident-loop TEM in seafloor exploration.The TEM response of coincident loops is firstly derived in the integral form,based on the potential functions in Helmholtz equ-ations for a magnetic source locating in the whole-space layered model.The frequency-domain vertical magnetic field is described as the Hankel integral with double first-order Bessel functions of first kind.Se-condly,the time-domain induced voltage is obtained by transforming the frequency-domain response through the cosine transform and then taking the derivative of time.To simultaneously solve the Hankel transform and the cosine transform,a novel algorithm is introduced by adapting the fixed-point quadra-ture and extrapolation via the Shanks transformation.Finally,a typical conductivity model for marine po-lymetallic deposit is designed to investigate the characteristic of TEM response under various conditions.Numerical results demonstrate that existence of conductive seawater causes the TEM response to increase significantly and decay slower.The air-sea reflected electromagnetic waves lead to a significantly large fake negative response(NR)in shallower seawater with depth less than 300 m.Increase in the height of loops will weaken and delay the anomaly response and shorten the observation time-window.The height of configu-ration should be no more than 100 m for shallower targets and 50 m for deeper targets,respectively.The observation time-window should cover 10-1000 ms.Increase in the radius of loops only enhances the TEM response proportionally but hardly improves the relative anomaly.The vertical resolution on the low-resistivity target approximates 20 m for the configuration considered in the study.Decreases in D.C.resistivity and chargeability cause the positive response(PR)to increase significantly and decay more ra-pidly.Meanwhile,the NR is advanced and enlarged significantly and decays slower compared with the PR.The influence of time constant is not monotony and there exists an optimal value for producing the maxi-mum NR.As the frequency parameter increases,the PR is caused to decay more rapidly without magni-tude change and the NR is advanced and decays more rapidly with significant increase in magnitude.The influence of frequency parameter is more pronounced than that of time constant.展开更多
Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goa...Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on exp...The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on expounding the methods, principles and effects of down-hole detections by electric transmission tomography and transient electromagnetic method. The potential of point power supplied in the underground homogeneous semi-space, as well as the response to a low-resistivity abnormal body in the homogeneous semi-space, was simulated by adopting 3-D finite element method to interpret the basic theory of the electric transmission tomography. The results of actual measurement show that the mine electromagnetic method is sensitive to water-bearing low-resistivity bodies and can play a unique role in detecting the hidden danger of water gushing at the coal face.展开更多
基金Supported by the Sichuan Natural Resources Investment Group Technology Innovation Project"Application Research of Wide Area Electromagnetic Method in Shale Gas Electrical Detection in Southern Sichuan"。
文摘The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the first member of the Longmaxi Formation to the Wufeng Formation at the bottom of the Longmaxi Formation.Given this correlation and based on the logging electrical data,this study employs the wide-field electromagnetic method(WFEM)to experimentally detect the electrical characteristics of the deep shale gas target layer in the Yibin area of southern Sichuan.The study also tests the regularity and effectiveness of the electrical parameters for evaluating favorable areas of shale gas reservoirs.In terms of specific operation,the structural pattern of the study area is implemented based on the wide-field electromagnetic results and geological data for comprehensive analysis,which identifies the main hidden faults and their influence range on low resistance.The detailed spatial distribution of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the target layer with a buried depth of 2000-5000m is described.This layer exhibits the characteristics of a continuous and stable distribution of organic shale.After verifying the subsequent electrical logging data,the electrical logging curve is found to be essentially consistent with the shape and trend of the wide-field resistivity curve.This consistency demonstrates the effectiveness of WFEM in detecting shale gas layers.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金supported by research funds of the Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control(2201K004)the Key Research and Development Program in Yunnan Province,“Research on Key Technologies for Exploration and Development of Deep and Medium Geothermal Energy in Yunnan Province”(No.202302AF080001)+2 种基金“Mineralization laws and Prospecting Technology Research in the Key Mining Cluster Area of Western Yunnan Province”(No.202303AA080006)the Shenzhen Municipal Science and Technology Innovation Committee(JCYJ20220818103010021)the Guangdong Provincial Marine Economy Special Project,GDNRC[2021]57.
文摘The Heishan geothermal area is positioned above the sole Yunnane-Tibet high-temperature geothermal belt,where huge geothermal energy resources are available.Utilizing the characteristics of large exploration depth,extensive coverage,and high precision of the wide-field elec-tromagnetic method,four survey lines were deployed,totaling 29.8 km,to enable a comprehensive analysis of the granite structure and fault distribution.The results indicate that the rocks within the area can be vertically divided into a granite basement and a fractured layer.Moreover,three different zones of resistivity were identified:the granite basement zone has a resistivity range of 2500-20000 U m,whereas the compressional shear zone and the secondary fault zone have a resistivity range of 750-2500 U m,and the extensional fault zone and the main fault zone have resistivity values below 750 U m.The Heishan-Hejian fault and the fault zone formed during its right-lateral strike-slip process,as well as the controlled area of the Qianmaihe fault,are all favorable targets.Of these,the Qianmahe fault possesses a larger-scale heat-conducting and water-controlling structure.In addition,in the secondary fault-controlled area extending to the west,the zone between F2’and F4 exhibits renewed tectonic activity,suggesting a greater potential for geothermal resources.
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
基金supported by the National Natural Science Foundation of China(Nos.41564001 and 41572185)the Natural Science Foundation of Jiangxi Province(No.20151BAB203045)
文摘Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.
基金Supported by the National Key R&D Program of China(2018YFC0807802)National Natural Science Foundation of China(41874081)。
文摘To improve effectiveness of ASP flooding, it is necessary to establish a reliable parameter design and tracking adjustment method to monitor the process of oil displacement. A differential wide field electromagnetic method was proposed and applied to the ASP displacement monitoring test in a block of the Daqing Oilfield. In the process of ASP flooding, the electromagnetic field was measured many times. The data acquired before the ASP flooding were set as the background field, and the resistivity model was obtained by inversion. Then, the resistivity data were calibrated by logging data and the resistivity model was established. Finally, the range and front of ASP flooding were deduced with the residual gradient from the spatial domain first-order difference of the resistivity model. Production data of well groups in this block have proved that this method can work out the range and front of ASP flooding accurately, providing support for optimization of ASP flooding parameters.
基金financially supported by the Thirteenth Five-Year-Plan Major Project "Marine Shale Gas Exploration and Evaluation over Laifengxianfeng and Hefeng Block"(No.2016ZX05034004-004)China Huadian Engineering Co.,LTD(No.CHEC-KJ-2014-Z10)
文摘In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.
基金supported by the Institute of Seismology Foundation, China Earthquake Administration (201326126)
文摘The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.
基金Project 40674074 supported by the National Natural Science Foundation of China20050290501 by the Specialized Research Fund for the Doctoral Programof Higher EducationD200409 by the Scientific Research Fund for Youth of China University of Mining & Technology
文摘Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.
基金support received from the National Basic Research Program of China (No2007CB209400)the National Natural Science Foundation of China (No50774085)the Young Scientists Fund of the School Science Foundation of CUMT (No2008A046)
文摘Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.
基金Project(2019-SF-141)supported by Science and Technology Program of Qinghai Province,ChinaProjects(2017042105kc055,2017042014ky014)supported by Geological Exploration Foundation of Qinghai Province,China。
文摘In order to study the distribution of shale gas reservoir in the Babaoshan Basin of Eastern Kunlun,the wide-field electromagnetic(WFEM)survey was carried out to obtain the spatial distribution characteristics of the underground electrical volume resistivity based on the delineation of the scope of the Babaoshan Basin by regional gravity data.The basic characteristics of the basement,basin framework,and extension,vertical change,burial depth of dark mud shale in this area were identified,and the electrical distribution of the Babaoshan mud shale horizon was revealed,which has been proved to be a good geological effect by drilling.The exploration results show that the WFEM has significant effects on the exploration of shale gas occurrence strata,which meets the needs of investigation and evaluation of multi-layered and large-scale shale gas,and plays a good demonstration role in the follow-up shale gas exploration.
基金funded by the National Natural Science Foundation of China(No.42004056)the Natural Science Foundation of Shangdong Province,China(No.ZR2020QD052)China Postdoctoral Science Foundation(No.2019M652386)。
文摘To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.
基金Projects(40804027,41074085) supported by the National Natural Science Foundation of ChinaProject(09JJ3048) supported by the Natural Science Foundation of Hunan Province,ChinaProject(200805331082) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
基金This research was supported by the National Key R&D Program of China(No.2018YFC0603806).
文摘The transient electromagnetic(TEM)method becomes more urgent than ever for marine ex-ploration due to abundant resource reserves and the increasing undersea engineering construction activities,especially in the offshore exploration of mineral deposits such as Sanshandao gold mine.However,the re-search and application of TEM method in marine environment are still challenged by many problems.Such contradiction motivates our study on the coincident-loop TEM in seafloor exploration.The TEM response of coincident loops is firstly derived in the integral form,based on the potential functions in Helmholtz equ-ations for a magnetic source locating in the whole-space layered model.The frequency-domain vertical magnetic field is described as the Hankel integral with double first-order Bessel functions of first kind.Se-condly,the time-domain induced voltage is obtained by transforming the frequency-domain response through the cosine transform and then taking the derivative of time.To simultaneously solve the Hankel transform and the cosine transform,a novel algorithm is introduced by adapting the fixed-point quadra-ture and extrapolation via the Shanks transformation.Finally,a typical conductivity model for marine po-lymetallic deposit is designed to investigate the characteristic of TEM response under various conditions.Numerical results demonstrate that existence of conductive seawater causes the TEM response to increase significantly and decay slower.The air-sea reflected electromagnetic waves lead to a significantly large fake negative response(NR)in shallower seawater with depth less than 300 m.Increase in the height of loops will weaken and delay the anomaly response and shorten the observation time-window.The height of configu-ration should be no more than 100 m for shallower targets and 50 m for deeper targets,respectively.The observation time-window should cover 10-1000 ms.Increase in the radius of loops only enhances the TEM response proportionally but hardly improves the relative anomaly.The vertical resolution on the low-resistivity target approximates 20 m for the configuration considered in the study.Decreases in D.C.resistivity and chargeability cause the positive response(PR)to increase significantly and decay more ra-pidly.Meanwhile,the NR is advanced and enlarged significantly and decays slower compared with the PR.The influence of time constant is not monotony and there exists an optimal value for producing the maxi-mum NR.As the frequency parameter increases,the PR is caused to decay more rapidly without magni-tude change and the NR is advanced and decays more rapidly with significant increase in magnitude.The influence of frequency parameter is more pronounced than that of time constant.
基金supported by the Joint Funds of National Natural Science Foundation of China and Shanxi Province(U1710258 and U1810120)Distinguished Youth Funds of National Natural Science Foundation of China(51925402)+3 种基金Ten Thousand Talent Program of China for Leading Scientists in Science,Technology and Innovation,Shanxi Science and Technology Major Project Funds(No.20201102004)Shanxi“1331 Project”Funds,Shanxi Province Key Laboratory Construction Project Funds(No.202104010910021)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2021SX-TD001,No.2021SX-TD002)National Natural Science Foundation of China(51804208).
文摘Water inrush disasters poses a great threat to the safe exploitation of coal resources.To solve this problem,the transient electromagnetic method(TEM)was proposed to accurately detect the water accumulation in the goaf.The electromagnetic response characteristics of diferent water-flled goaves were studied by electromagnetic feld theory,numerical simulation and feld verifcation.Through the models of 100%water accumulation,50%water accumulation,0%water accumulation,100%water accumulation with collapsed rock,50%water accumulation with collapsed rock and 0%water accumulation with collapsed rock goaf,the characteristics of induced voltage attenuation curves were studied.Meanwhile,the relationship between the attenuation voltage value and area of the transmitting coil,the depth of the goaf,the background resistivity,and the delay time were also simulated.The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0%water accumulation model but existed abnormal exaltation for voltage in water-flled model.Through the linear ftting curve,it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement.Moreover,the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistivity anomalous efect on the water-accumulated goaf.In addition,the response value of the attenuation voltage increased as the area of the transmitting coil increases,but decreased with increasing delay time and increasing background resistivity and depth of the target body.The feld detection results of the Majiliang coal mine also confrmed the theoretical analysis and the numerical simulation.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
基金Supported by the National Basic Research of China(2006CB202207)the National Natural Science Foundation of China(40674060)
文摘The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on expounding the methods, principles and effects of down-hole detections by electric transmission tomography and transient electromagnetic method. The potential of point power supplied in the underground homogeneous semi-space, as well as the response to a low-resistivity abnormal body in the homogeneous semi-space, was simulated by adopting 3-D finite element method to interpret the basic theory of the electric transmission tomography. The results of actual measurement show that the mine electromagnetic method is sensitive to water-bearing low-resistivity bodies and can play a unique role in detecting the hidden danger of water gushing at the coal face.