期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Electromagnetic modeling of interference,confocal,and focus variation microscopy 被引量:1
1
作者 Tobias Pahl Felix Rosenthal +5 位作者 Johannes Breidenbach Corvin Danzglock Sebastian Hagemeier Xin Xu Marco Künne Peter Lehmann 《Advanced Photonics Nexus》 2024年第1期104-116,共13页
We present a unified electromagnetic modeling of coherence scanning interferometry,confocal microscopy,and focus variation microscopy as the most common techniques for surface topography inspection with micro-and nano... We present a unified electromagnetic modeling of coherence scanning interferometry,confocal microscopy,and focus variation microscopy as the most common techniques for surface topography inspection with micro-and nanometer resolution.The model aims at analyzing the instrument response and predicting systematic deviations.Since the main focus lies on the modeling of the microscopes,the light–surface interaction is considered,based on the Kirchhoff approximation extended to vectorial imaging theory.However,it can be replaced by rigorous methods without changing the microscope model.We demonstrate that all of the measuring instruments mentioned above can be modeled using the same theory with some adaption to the respective instrument.For validation,simulated results are confirmed by comparison with measurement results. 展开更多
关键词 interference microscopy coherence scanning interferometry confocal microscopy focus variation microscopy electromagnetic modeling surface topography measurement
在线阅读 下载PDF
Modeling and resolution analysis of microcylinder-assisted microscopy in reflection and transmission modes
2
作者 Felix Rosenthal Tobias Pahl +4 位作者 Lucie Hüser Michael Diehl Tim Eckhardt Sebastian Hagemeier Peter Lehmann 《Advanced Photonics Nexus》 2025年第4期22-33,共12页
Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral r... Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM. 展开更多
关键词 microsphere-assisted microscopy resolution enhancement resolution limit electromagnetic modeling SUPER-RESOLUTION whispering gallery mode
在线阅读 下载PDF
Fast and Accurate Prediction of Electromagnetic and Temperature Fields for SPMSM Equipped with Unequally Thick Magnetic Poles
3
作者 Feng Liu Xiuhe Wang +1 位作者 Lingling Sun Hongye Wei 《CES Transactions on Electrical Machines and Systems》 2025年第2期199-211,共13页
With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher ... With the continuous upgrading of traditional manufacturing industries and the rapid rise of emerging technology fields,the performance requirements for the permanent magnet synchronous motors(PMSMs)have become higher and higher.The importance of fast and accurate electromagnetic thermal coupling analysis of such motors becomes more and more prominent.In view of this,the surfacemounted PMSM(SPMSM)equipped with unequally thick magnetic poles is taken as the main object and its electromagnetic thermal coupling analytical model(ETc AM)is investigated.First,the electromagnetic analytical model(EAM)is studied based on the modified subdomain method.It realizes the fast calculation of key electromagnetic characteristics.Subsequently,the 3D thermal analytical model(TAM)is developed by combining the EAM,the lumped parameter thermal network method(LPTNM),and the partial differential equation of heat flux.It realizes the fast calculation of key thermal characteristics in 3D space.Further,the information transfer channel between EAM and TAM is built with reference to the intrinsic connection between electromagnetic field and temperature field.Thereby,the novel ETcAM is proposed to realize the fast and accurate prediction of electromagnetic and temperature fields.Besides,ETcAM has a lot to commend it.One is that it well accounts for the complex structure,saturation,and heat exchange behavior.Second,it saves a lot of computer resources.It offers boundless possibilities for initial design,scheme evaluation,and optimization of motors.Finally,the validity,accuracy,and practicality of this study are verified by simulation and experiment. 展开更多
关键词 electromagnetic field and temperature field electromagnetic thermal coupling analytical model(ETcAM) Fast and accurate prediction SPMSM Unequally thick magnetic poles
在线阅读 下载PDF
Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources 被引量:2
4
作者 李俊杰 严家斌 皇祥宇 《Applied Geophysics》 SCIE CSCD 2015年第4期503-515,627,共14页
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as eleme... Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM. 展开更多
关键词 Element-free Galerkin method point-interpolation method radial pointinterpolation method Poisson equation controlled-source electromagnetic modeling coupled meshfree method
在线阅读 下载PDF
2.5-D modeling of cross-hole electromagnetic measurement by nite element method 被引量:3
5
作者 Shen Jinsong Sun Wenbo 《Petroleum Science》 SCIE CAS CSCD 2008年第2期126-134,共9页
A finite element method is developed for simulating frequency domain electromagnetic responses due to a dipole source in the 2-D conductive structures. Computing costs are considerably minimized by reducing the full t... A finite element method is developed for simulating frequency domain electromagnetic responses due to a dipole source in the 2-D conductive structures. Computing costs are considerably minimized by reducing the full three-dimensional problem to a series of two-dimensional problems. This is accomplished by transforming the problem into y-wave number (Ky) domain using Fourier transform and the y-axis is parallel to the structural strike. In the Ky domain, two coupled partial differential equations for magnetic field Hy and electric field Ey are derived. For a specific value of Ky, the coupled equations are solved by the finite element method with isoparametric elements in the x-z plane. Application of the inverse Fourier transform to the Ky, domain provides the electric and magnetic fields in real space. The equations derived can be applied to general complex two-dimensional structures containing either electric or magnetic dipole source in any direction. In the modeling of the electromagnetic measurement, we adopted a pseudo-delta function to distribute the dipole source current and circumvent the problem of singularity at the source point. Moreover, the suggested method used isoparametric finite elements to accommodate the complex subsurface formation. For the large scale linear system derived from the discretization of the Maxwell's equations, several iterative solvers were used and compared to select the optimal one. A quantitative test of accuracy was presented which compared the finite element results with analytic solutions for a dipole source in homogeneous space for different ranges and different wave numbers Ky. to validate the addressed the effects of the distribution range τ of the homogeneous medium. code and check its effectiveness. In addition, we pseudo-delta function on the numerical results in 展开更多
关键词 2.5-D electromagnetic modeling frequency domain isoparametric finite element pseudo-delta function
原文传递
Meshing effects of the 3-D FEM numerical modeling in seismo-electromagnetics:An application in selectivity of seismic electric signal (SES)
6
作者 Qiao Wang Guangjing Xu Zhanhui Li Qinghua Huang 《Earthquake Science》 CSCD 2011年第6期565-576,共12页
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in... We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results. 展开更多
关键词 3D electromagnetic numerical modeling FEM MESHING SES
在线阅读 下载PDF
A high output power 340 GHz balanced frequency doubler designed based on linear optimization method
7
作者 LIU Zhi-Cheng ZHOU Jing-Tao +5 位作者 MENG Jin WEI Hao-Miao YANG Cheng-Yue SU Yong-Bo JIN Zhi JIA Rui 《红外与毫米波学报》 北大核心 2025年第2期184-191,共8页
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ... In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%. 展开更多
关键词 linear optimization method(LOM) three-dimensional electromagnetic model(3D-EM) Harmonic impedance optimization Schottky planar diode Terahertz frequency doubler
在线阅读 下载PDF
Resource Allocation for a Secure SWIPT Network Aided by a RIS Relying on S-Parameter Communication Model
8
作者 Ma Ruoyan Tang Jie +2 位作者 Zhang Xiuyin Kai-Kit Wong Jonathon A.Chambers 《China Communications》 2025年第6期220-236,共17页
In the Internet of Things(IoT)based scenarios,the network may encounter significant issues related to energy and communication as a result of a progressively growing number of terminals.We introduce simultaneous wirel... In the Internet of Things(IoT)based scenarios,the network may encounter significant issues related to energy and communication as a result of a progressively growing number of terminals.We introduce simultaneous wireless power transfer(SWIPT)technology assisted by a reconfigurable intelligent surface(RIS)to counteract this challenge.Thus,the network’s flexibility and reliability will be further enhanced.According to this system architecture,the scattering-parameter-based communication model is introduced to disclose hardware features for an energy efficiency(EE)maximization problem.Specifically,the potential unauthorized demodulation is also considered in the problem formulation.To resolve the issue,an alternative strategy is utilized to optimize iteratively the coupled variables.In particular,the block coordinate descent(BCD)approach based on the Sherman-Morrison formula is proposed to solve the RIS subproblem.The numerical results prove the hardware effects cannot be dismissed lightly.Besides,the configuration of the RIS may impact the network performance directly. 展开更多
关键词 electromagnetic system model energy efficiency reconfigurable intelligent surface simultaneous wireless information and power transfer
在线阅读 下载PDF
Computer Analysis of Electromagnetic Transients in Grounding Systems Considering Variation of Soil Parameters with Frequency
9
作者 Marco A.O.Schroeder Marcio M.Afonso +1 位作者 Tarcisio A.S.Oliveira Sandro C.Assis 《Journal of Electromagnetic Analysis and Applications》 2012年第12期475-480,共6页
This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obta... This paper presents a mathematical model to calculate transients in grounding systems. The derived equations arise from direct application of basic electromagnetic equations in frequency domain, whose solution is obtained by the application of the Moment Methods. A formulation based on experimental measurements is applied to quantify the soil parameters for each frequency. The unified approach is applied in the calculation of the grounding impedance of horizontal electrodes. Results show that the inclusion of frequency dependence of the soil parameters leads to a reduction of the values of grounding impedance, in comparison with results for soils with parameters independent of frequency. 展开更多
关键词 Grounding Electrodes Grounding Impedance Transient Response Frequency Response electromagnetic modeling
在线阅读 下载PDF
Electromagnetic Model and Image Reconstruction Algorithms Based on EIT System 被引量:3
10
作者 曹章 王化祥 《Transactions of Tianjin University》 EI CAS 2006年第6期420-424,共5页
An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the res... An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position. 展开更多
关键词 electrical impedance tomography electromagnetic model conformal transformation reconstruction algorithm
在线阅读 下载PDF
Study on three dimensional electromagnetic model for permanent magnet linear synchronous motor 被引量:2
11
作者 汪旭东 王兆安 袁世鹰 《Journal of Coal Science & Engineering(China)》 2002年第1期87-90,共4页
In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D e... In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM. 展开更多
关键词 permanent magnet linear synchronous motor quasi-3D electromagnetic field model Fourier transform
在线阅读 下载PDF
Optimization of strand and final electromagnetic stirrers of round bloom casters with multiple sections 被引量:1
12
作者 Rui Wang Yan-ping Bao +1 位作者 Yi-hong Li Hang-Hang An 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1150-1156,共7页
Strand electromagnetic stirring(S-EMS) and final electromagnetic stirring(F-EMS) are the main methods used to improve the center porosity and segregation for round blooms. To optimize the stirring conditions, nail... Strand electromagnetic stirring(S-EMS) and final electromagnetic stirring(F-EMS) are the main methods used to improve the center porosity and segregation for round blooms. To optimize the stirring conditions, nail shooting tests were conducted for three sections of large round blooms with diameters of ф380 mm, ф450 mm, and ф600 mm. Acid leaching and sulfur print tests were used to investigate the shell thickness. Based on the results of nail shooting tests, a mathematical model of solidification was established, and the variation of shell thickness and the central solid fraction were exactly calculated by the model. By taking all sections into account, the locations of S-EMS and F-EMS were optimized for each section. In the results, the macro-segregation of various sections is improved after the locations of S-EMS and F-EMS systems are changed. 展开更多
关键词 continuous casting electromagnetic stirring blooms mathematical models optimization
在线阅读 下载PDF
An electromagnetic view of relay time in propagation of neural signals
13
作者 Jing-Jing Xu San-Jin Xu +1 位作者 Fan Wang Sheng-Yong Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期589-594,共6页
We review the experimental and computational data about the propagation of neural signals in myelinated axons in mice,cats,rabbits,and frogs published in the past five decades.In contrast to the natural assumption tha... We review the experimental and computational data about the propagation of neural signals in myelinated axons in mice,cats,rabbits,and frogs published in the past five decades.In contrast to the natural assumption that neural signals occur one by one in time and in space,we figure out that neural signals are highly overlapped in time between neighboring nodes.This phenomenon was occasionally illustrated in some early reports,but seemed to have been overlooked for some time.The shift in time between two successive neural signals from neighboring nodes,defined as relay timeτ,was calculated to be only 16.3μs-87.0μs,i.e.,0.8%-4.4%of the average duration of an action potential peak(roughly 2 ms).We present a clearer picture of the exact physical process about how the information transmits along a myelinated axon,rather than a whole action potential peak,what is transmitted is only a rising electric field caused by transmembrane ion flows.Here in the paper,τrepresents the waiting time until the neighboring node senses an attenuated electric field reaching the threshold to trigger the open state.The mechanisms addressed in this work have the potential to be universal,and may hold clues to revealing the exact triggering processes of voltage-gated ion channels and various brain functions. 展开更多
关键词 neural signal relay propagation velocity electromagnetic field model ion channels
原文传递
A numerical analytic method for electromagnetic radiation accompanying with fracture of rocks
14
作者 陈震 黄卡玛 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期333-338,共6页
This paper studies Rabinovitch's compression experiments on granite and chalk and proposes a.n oscillating dipole model to analyse and simulate the electromagnetic radiation phenomenon caused by fracture of rocks. Ou... This paper studies Rabinovitch's compression experiments on granite and chalk and proposes a.n oscillating dipole model to analyse and simulate the electromagnetic radiation phenomenon caused by fracture of rocks. Our model assumes that the electromagnetic radiation pulses are initiated by vibrations of the charged rock grains on the tips of the crack. The vibrations of the rock grains are stimulated by the pulses of the cracks. Our simulations show comparable results with Rabinovitch's compression experiments. From the simulation results, it verifies an assumption that the crack width is inversely proportional to the circular frequency electromagnetic radiation, which is presented by Rabinovitch et al. The simulation results also imply that, by using our oscillating dipole model together with Rabinovitch's two equations about the crack length and crack width, we can quantitatively analyse and simulate the electromagnetic radiation phenomenon, which is induced from the fracture of the rocks. 展开更多
关键词 oscillating dipoles electromagnetic radiation model fracture of rocks
原文传递
Exploitation of Electromagnetic Models for Sea Wind Speed Estimation from C-Band Sentinel-1 Images
15
作者 Tran Vu La Ali Khenchaf +2 位作者 Fabrice Comblet Carole Nahum Helmi Ghanmi 《Journal of Electromagnetic Analysis and Applications》 2016年第3期42-55,共14页
Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can ... Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval. 展开更多
关键词 C-Band Synthetic Aperture Radar (SAR) electromagnetic (EM) Scattering Models Radar Cross-Section (RCS) Remote Sensing Small Perturbation Model (SPM) Sea Surface Wind
在线阅读 下载PDF
A novel refined dynamic model of high-speed maglev train-bridge coupled system for random vibration and running safety assessment 被引量:1
16
作者 MAO Jian-feng LI Dao-hang +3 位作者 YU Zhi-wu CAI Wen-feng GUO Wei ZHANG Guang-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2532-2544,共13页
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b... Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval. 展开更多
关键词 maglev train-bridge interaction electromagnetic force-air gap model stochastic dynamic analysis running safety assessment probability density evolution method
在线阅读 下载PDF
Effect of desorbed gas on microwave breakdown on vacuum side of dielectric window
17
作者 赵朋程 刘忠玉 +3 位作者 王瑞 舒盼盼 郭立新 曹祥鑫 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期85-93,共9页
The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is describe... The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is described by using the electromagnetic particle-in-cell-Monte Carlo collision(PIC-MCC) model. The process of desorption of gas and its influence on the breakdown characteristics are studied. The simulation results show that, due to the accumulation of desorbed gas, the pressure near the dielectric surface increases in time, and the breakdown mechanism transitions from secondary electron multipactor to collision ionization. More and more electrons generated by collision ionization drift to the dielectric surface, so that the amplitude of self-organized normal electric field increases in time and sometimes points to the dielectric surface. Nevertheless, the number of secondary electrons emitted in each microwave cycle is approximately equal to the number of primary electrons. In the early and middle stages of breakdown, the attenuation of the microwave electric field near the dielectric surface is very small. However, the collision ionization causes a sharp increase in the number density of electrons,and the microwave electric field decays rapidly in the later stage of breakdown. Compared with the electromagnetic PIC-MCC simulation results, the mean energy and number of electrons obtained by the electrostatic PIC-MCC model are overestimated in the later stage of breakdown because it does not take into account the attenuation of microwave electric field. The pressure of the desorbed gas predicted by the electromagnetic PIC-MCC model is close to the measured value,when the number of gas atoms desorbed by an incident electron is taken as 0.4. 展开更多
关键词 electron multipactor collision ionization desorbed gas electromagnetic particle-in-cell-Monte Carlo collision model
在线阅读 下载PDF
Numerical Simulation of Azimuthal Uniformity of Injection Currents in Single-Point-Feed Induction Voltage Adders 被引量:1
18
作者 魏浩 孙凤举 +4 位作者 尹佳辉 呼义翔 梁天学 丛培天 邱爱慈 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第3期235-240,共6页
In order to investigate the injection current uniformity around the induction cell bores, two fully electromagnetic (EM) models are respectively established for a single-stage induction cell and an induction voltage... In order to investigate the injection current uniformity around the induction cell bores, two fully electromagnetic (EM) models are respectively established for a single-stage induction cell and an induction voltage adder (IVA) with three cells stacked in series, without considering electron emission. By means of these two models, some factors affecting the injection current uni- formity are simulated and analyzed, such as the impedances of adders and loads, cell locations, and feed timing of parallel driving pulses. Simulation results indicate that higher impedances of adder and loads are slightly beneficial to improve injection current uniformity. As the impedances of adder and loads increase from 5 Ω to 30Ω, the asymmetric coefficient of feed currents decreases from 10.3% to 6.6%. The current non-uniformity within the first cell is a little worse than that in other downstream cells. Simulation results also show that the feed timing would greatly affect current waveforms, and consequently cause some distortion in pulse fronts of cell output voltages. For a given driving pulse with duration time of 70-80 ns, the feed timing with a time deviation of less than 20 ns is acceptable for the three-cell IVAs, just causing the rise time of output voltages to increase about 5 ns at most and making the peak voltage decrease by 3.5%. 展开更多
关键词 induction voltage adders (IVA) induction cell single-point feed current uni- formity electromagnetic model
在线阅读 下载PDF
Virtual electromagnetic environment modeling based data augmentation for drone signal identification 被引量:1
19
作者 Hanshuo Zhang Tao Li +1 位作者 Yongzhao Li Zhijin Wen 《Journal of Information and Intelligence》 2023年第4期308-320,共13页
Radio frequency(RF)-based drone identification technologies have the advantages of long effective distances and low environmental dependence,which has become indispensable for drone surveillance systems.However,since ... Radio frequency(RF)-based drone identification technologies have the advantages of long effective distances and low environmental dependence,which has become indispensable for drone surveillance systems.However,since drones operate in unlicensed frequency bands,a large number of co-frequency devices exist in these bands,which brings a great challenge to traditional signal identification methods.Deep learning techniques provide a new approach to complete endto-end signal identification by directly learning the distribution of RF data.In such scenarios,due to the complexity and high dynamics of the electromagnetic environments,a massive amount of data that can reflect the various propagation conditions of drone signals is necessary for a robust neural network(NN)for identifying drones.In reality,signal acquisition and labeling that meet the above requirements are too costly to implement.Therefore,we propose a virtual electromagnetic environment modeling based data augmentation(DA)method to improve the diversity of drone signal data.The DA method focuses on simulating the spectrograms of drone signals transmitted in real-world environments and randomly generates extra training data in each training epoch.Furthermore,considering the limited processing capability of RF receivers,we modify the original YOLOv5s model to a more lightweight version.Without losing the identification performance,more hardware-friendly designs are applied and the number of parameters decreases about 10-fold.For performance evaluation,we utilized a universal software radio peripheral(USRP)X310 platform to collect RF signals of four drones in an anechoic chamber and a practical wireless scenario.Experiment results reveal that the NN trained with augmented data performs as well as that trained with practical data in the complex electromagnetic environment. 展开更多
关键词 Drone signal identification Data augmentation Virtual electromagnetic environment modeling You Only Look Once SPECTROGRAM
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部