期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Mechanism and Properties of Al_(2)O_(3)-Ru Composite Coatings Prepared by Cathode Plasma Electrolytic Deposition 被引量:1
1
作者 Xue Jianchao Jia Bo +4 位作者 Wang Yafei Feng Qing Chai Zuoqiang Hao Xiaojun Xue Juanqin 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第12期3306-3312,共7页
Alumina coatings doped with different precious metals were prepared by cathode plasma electrolytic deposition.Results show that the porosity of precious metal-doped alumina coatings(especially Al_(2)O_(3)-Ru)decreases... Alumina coatings doped with different precious metals were prepared by cathode plasma electrolytic deposition.Results show that the porosity of precious metal-doped alumina coatings(especially Al_(2)O_(3)-Ru)decreases,and the high-temperature cyclic oxidation resistance and spallation resistance are enhanced.The Al_(2)O_(3)-Ru composite coating shows better effect:its average oxidation rate K and average amount of oxide spallation G are minimum.Meanwhile,Nernst equation was used to explain the simultaneous deposition of precious metal and alumina,and the whole process and mechanism of deposition were analyzed. 展开更多
关键词 cathode plasma electrolytic deposition precious metal POROSITY high-temperature cyclic oxidation resistance spallation resistance
原文传递
Recent advance in coating strategies for lithium-rich manganese-based cathode materials 被引量:1
2
作者 Qianchen Wang Lei Liu +3 位作者 Hudong Li Gaojing Yang Abdullah NAlodhayb Jianmin Ma 《Journal of Materials Science & Technology》 2025年第4期274-294,共21页
The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes... The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs. 展开更多
关键词 Lithium-rich manganese-based cathode materials Lithium-ion batteries Coating strategies Design of cathode electrolyte interphase
原文传递
Armor-like cathode electrolyte interphase contributes to 576 Wh/kg Li||LRMO pouch cell
3
作者 Baofeng Wang Yu Wang +1 位作者 Junxi Zhang Qiang Wu 《Chinese Chemical Letters》 2025年第7期10-12,共3页
Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials... Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials for high-specific-energy lithium metal batteries(LMBs)[1].However,LRMOs face a series of serious problems such as irreversible lattice oxygen loss,transition metal(TM)migration,phase transfer,and interfacial side reactions at high voltages,resulting in rapid decay of capacity and voltage[2,3].In situ generating well-functional CEI through electrolyte engineering can effectively address these challenges[4]. 展开更多
关键词 lithium metal batteries lmbs howeverlrmos irreversible lattice oxygen losstransition lithium metal batteries specific capacity lithium rich manganese based oxides cathode materials situ gene armor cathode electrolyte interphase
原文传递
Enhancing long-term cycling stability of spinel LiNi_(0.5)Mn_(1.5)O_(4)cathode via ultrathin ZrO_(2)coating layer
4
作者 Jie MEI Qi-xiang XU +5 位作者 Yuan-zhi CHEN Gui-yang GAO Wan-jie XU Qing-shui XIE Lai-seng WANG Dong-liang PENG 《Transactions of Nonferrous Metals Society of China》 2025年第12期4217-4229,共13页
Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode draws significant attention in the field of energy storage due to its unique voltage plateau.To further enhance the long-term electrochemical stability of LNMO,the LNMO cath... Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode draws significant attention in the field of energy storage due to its unique voltage plateau.To further enhance the long-term electrochemical stability of LNMO,the LNMO cathode covered with an ultrathin ZrO_(2)layer was prepared through atomic layer deposition(ALD).It is found that the LNMO cathode deposited with 20 layers of ZrO_(2)(LNMOZ20)exhibits the best electrochemical performance,achieving a high discharge capacity of 117.1 mA·h/g,with a capacity retention of 87.4%after 600 cycles at a current density of 1C.Furthermore,even at higher current densities of 5C and 10C,the LNMOZ20 electrode still demonstrates excellent stability with discharge capacities reaching 111.7 and 103.6 mA·h/g,and capacity retentions maintaining at 81.0%and 101.4%after 2000 cycles,respectively.This study highlights that the incorporation of an ultrathin ZrO_(2)layer by ALD is an effective strategy for enhancing the long-term cycling stability of LNMO cathodes. 展开更多
关键词 spinel LiNi_(0.5)Mn_(1.5)O_(4) ZrO_(2)coating high-voltage cathode atomic layer deposition cathode electrolyte interphase film
在线阅读 下载PDF
Elevated temperature resilience of pouch LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite batteries through siloxane-induced cathode electrolyte interphase optimization
5
作者 Xiang Gao Peiqi Zhou +6 位作者 Haijia Li Xueyi Zeng Xin He Weizhen Fan Wenlian Wang Zhen Ma Junmin Nan 《Journal of Energy Chemistry》 2025年第5期202-213,共12页
As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(etheny... As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(ethenyl)silyloxysilane (HVDS) with Si–O bonds and unsaturated bonds is introduced as additive designing functional electrolyte to enhance the long-cycle stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/graphite LIBs at elevated temperature.The preferential oxidization and component of HVDS facilitate the generation of an extremely robust and ultra-thin cathode electrolyte interphase (CEI) comprising a chemically bonded silane polymer.This interphase effectively suppresses side-reactions of electrolyte,mitigates HF erosion,and reduces irreversible phase transitions.Benefiting from the above merits,the batteries’capacity retention shows a remarkable increase from 20% to 92% after nearly 1550 cycles conducted at room temperature.And under elevated temperature conditions (45℃),the capacity retention remains 80%after 670 cycles,in comparison to a drop to 80%after only 250 cycles with the blank electrolyte.These findings highlight HVDS’s potential to functionalize the electrolyte,marking a breakthrough in improving the longevity and reliability of NCM811/graphite LIBs under challenging conditions. 展开更多
关键词 High temperature performance Tris(ethenyl)-tris(ethenyl)silyloxysilane additive LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite battery cathode electrolyte interphase
在线阅读 下载PDF
Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery 被引量:10
6
作者 Wen-Hao Li Hao-Jie Liang +5 位作者 Xian-Kun Hou Zhen-Yi Gu Xin-Xin Zhao Jin-Zhi Guo Xu Yang Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期416-423,共8页
Dual-ion battery(DIB) composed of graphite cathode and lithium anode is regarded as an advanced secondary battery because of the low cost, high working voltage and environmental friendliness. However,DIB operated at h... Dual-ion battery(DIB) composed of graphite cathode and lithium anode is regarded as an advanced secondary battery because of the low cost, high working voltage and environmental friendliness. However,DIB operated at high potential(usually ≥ 4.5 V versus Li+/Li) is confronted with severe challenges including electrolyte decomposition on cathode interface, and structural deterioration of graphite accompanying with anions de-/intercalation, hinder its cyclic life. To address those drawbacks and preserve the DIB virtues, a feasible and scalable surface modification is achieved for the commercial graphite cathode of mesocarbon microbead. In/ex-situ studies reveal that, such an interfacial engineering facilitates and reconstructs the formation of chemically stable cathode electrolyte interphase with better flexibility alleviating the decomposition of electrolyte, regulating the anions de-/intercalation behavior in graphite with the retainment of structural integrity and without exerting considerable influence on kinetics of anions diffusion. As a result, the modified mesocarbon microbead exhibits a much-extended cycle life with high capacity retention of 82.3% even after 1000 cycles. This study demonstrates that the interface modification of electrode and coating skeleton play important roles on DIB performance improvement, providing the feasible basis for practical application of DIB owing to the green and scalable coating procedures. 展开更多
关键词 Dual-ion battery cathode electrolyte interphase Graphite cathode
在线阅读 下载PDF
LiPO_(2)F_(2) electrolyte additive for high-performance Li-rich cathode material 被引量:6
7
作者 Bing Jiang Jingru Li +7 位作者 Bi Luo Qizhang Yan Hao Li Lehao Liu Lihua Chu Yingfeng Li Qiaobao Zhang Meicheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期564-571,共8页
Li-rich layered oxide cathodes have received considerable attention because of the high operating potential and specific capacity. However, the structural instability and parasitic reactions at high potential cause se... Li-rich layered oxide cathodes have received considerable attention because of the high operating potential and specific capacity. However, the structural instability and parasitic reactions at high potential cause severe degradation of the electrochemical performance. In our studies, the cycling stability of Li_(1.14)Ni_(0.133)Co_(0.133)Mn_(0.544)O_(2) cathode is improved with LiPO_(2)F_(2) electrolyte additive. After 500 cycles, the capacity retention is increased from 53.6% to 85% at 3 C by LiPO_(2)F_(2) modification. This performance is mainly attributed to the enhanced interfacial stability of the Li-rich cathode. Based on systematic characterization, LiPO_(2)F_(2) additive was found to promote a stable interface film on the cathode surface during the cycling and mitigates the interfacial side reactions. This study provides new insights for improving high-potential Li-rich layered oxide batteries. 展开更多
关键词 Li-rich cathode cathode electrolyte interface LiPO_(2)F_(2) High energy density
在线阅读 下载PDF
Electrolyte perspective on stabilizing LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode for lithium-ion batteries 被引量:6
8
作者 Xiao-Feng Zhu Xiu Li +2 位作者 Tian-Quan Liang Xin-Hua Liu Jian-Min Ma 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期387-398,共12页
Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)is regarded as the promising cathode for lithium-ion batteries(LIBs).However,the challenges such as safety issues and poor cycling performance have seriously hindered... Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)is regarded as the promising cathode for lithium-ion batteries(LIBs).However,the challenges such as safety issues and poor cycling performance have seriously hindered its commercial applications.In order to overcome these difficulties,there has been extensive research and development of electrolyte modifications for high-energy-density LIBs with Ni-rich cathodes.Herein,this review introduces the research progress based on solvent additives,salt type additives and other electrolytes for LIBs with NCM811cathode materials and discusses how they control the interface stability.In particular,some recommendations for further modification of enhancing electrolyte stability and improving NCM811 electrochemical properties are summarized and proposed,which put forward new design rules for the screening and customizing ideal electrolyte additives for high performance NCM811 cathode-based LIBs. 展开更多
关键词 Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) Interface Electrolyte additives cathode electrolyte interphase(CEI) ELECTROLYTE
原文传递
Calcium-and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials 被引量:3
9
作者 Kwangeun Jung Taeeun Yim 《Rare Metals》 SCIE EI CAS CSCD 2021年第10期2793-2801,共9页
Ni-rich lithium nickel–cobalt-manganese oxides(NCM) are considered the most promising cathode materials for lithium-ion batteries(LIBs);however, relatively poor cycling performance is a bottleneck preventing their wi... Ni-rich lithium nickel–cobalt-manganese oxides(NCM) are considered the most promising cathode materials for lithium-ion batteries(LIBs);however, relatively poor cycling performance is a bottleneck preventing their widespread use in energy systems. In this work, we propose the use of a dually functionalized surface modifier, calcium sulfate(CaSO_(4), CSO), in an efficient one step method to increase the cycling performance of Ni-rich NCM cathode materials. Thermal treatment of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode materials with a CSO precursor allows the formation of an artificial Ca-and SO_(x)-functionalized cathode–electrolyte interphase(CEI) layer on the surface of Ni-rich NCM cathode materials. The CEI layer then inhibits electrolyte decomposition at the interface between the Ni-rich NCM cathode and the electrolyte. Successful formation of the CSO-modified CEI layer is confirmed by scanning electron microscopy(SEM) and Fourier transform infrared(FTIR) spectroscopy analyses, and the process does not affect the bulk structure of the Ni-rich NCM cathode material. During cycling, the CSO-modified CEI layer remarkably decreases electrolyte decomposition upon cycling at both room temperature and 45 ℃, leading to a substantial increase in cycling retention of the cells. A cell cycled with a 0.1 CSO-modified(modified with 0.1% CSO)NCM811 cathode exhibits a specific capacity retention of90.0%, while the cell cycled with non-modified NCM811 cathode suffers from continuous fading of cycling retention(74.0%) after 100 cycles. SEM, electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS), and inductively coupled plasma mass spectrometry(ICP-MS) results of the recovered electrodes demonstrate that undesired surface reactions such as electrolyte decomposition and metal dissolution are well controlled in the cell because of the artificial CSO-modified CEI layer present on the surface of Ni-rich NCM811 cathodes. 展开更多
关键词 Lithium-ion battery cathode cathode–electrolyte interphase Calcium sulfate Electrochemical performance
原文传递
Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG 被引量:4
10
作者 Tianyi Zhang Junsheng Wu +7 位作者 Lei Jin Zhan Zhang Wan Rong Bowei Zhang Yi Wang Yedong He Wei Liu Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2630-2637,共8页
A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macr... A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macromolecules increased the nitriding energy via enhancing the ability to bond the produced gas film to the metal/electrolyte interface.The cross-sectional morphologies indicate that a thick nitrided layer was obtained when the urea concentration was 543 g I^-1,corresponding to a Vickers hardness 450 HV(0.1),which was 3.5 times larger than that of the substrate.The nitrided layer mainly contained expanded austenite(γN),oxides and iron nitrides(e.g.,Fe3O4 and FeN(0.076)).In terms of its performance,coefficient of friction(COF)of the nitride layer decreased to nearly two-thirds that of the untreated layer,and the passivation current densities of the nitrided sample in a 3.5%NaCl solution decreased by an order of magnitude compared to that of the substrate.Therefore,the approach presented herein provides an attractive way to modify the effect of CPEN in a urea aqueous solution. 展开更多
关键词 316L stainless steel Cathodic plasma electrolytic nitriding Coefficient of friction Polarization curves
原文传递
Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries 被引量:3
11
作者 Jing Wang Shangqian Zhao +5 位作者 Ling Tang Fujuan Han Yi Zhang Yimian Xia Lijun Wang Shigang Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1003-1018,共16页
All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrode... All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved.In addition,the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed.In this paper,the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed.The mechanical contact problems from phenomena to internal causes are also analyzed.Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode.The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material.The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction.An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge.Finally,the following recommendations are put forward to realize the development vision of high-nickel layered cathodes:(1)develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes;(2)elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes,clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials,and address the intrinsic safety issues;(3)strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries. 展开更多
关键词 all-solid-state lithium-ion battery high-nickel layered cathode inorganic solid-state electrolyte cathodes and electrolyte interface
在线阅读 下载PDF
Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries:Promises and challenges 被引量:2
12
作者 Zhongyang Zhang Xinran Wang +1 位作者 Ying Bai Chuan Wu 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期606-635,共30页
With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devot... With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devoted into advanced electrode materials synthesis,while there is insufficient attention paid to regulate their interfaces.In this regard,the solid electrolyte interphase(SEI)at anode part has been studied for 40 years,already achieving remarkable outcomes on improving the stability of anode candidates.Unfortunately,the study on the cathode electrolyte interfaces(CEI)remains in infancy,which constitutes a potential restriction to the capacity contribution,stability and safety of cathodes.In fact,the native CEI generally possesses unfavorable characteristics against structural and compositional stability that requires demanding optimization strategies.Meanwhile,an in-depth understanding of the CEI is of great significance to guide the optimization principles in terms of composition,structure,growth mechanism,and electrochemical properties.In this literature,recent progress and advances of the CEI characterization methods and optimization protocols are summarized,and meanwhile the mutually-reinforced mechanisms between detection and modification are explained.The criteria and the potential development of the CEI characterization are proposed with insights of novel optimization directions. 展开更多
关键词 cathode electrolyte interface Secondary battery Characterization methods In situ/operando Synchrotron radiation
在线阅读 下载PDF
Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process 被引量:1
13
作者 Wei Wang Qin Yang +1 位作者 Kun Qian Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期72-78,I0003,共8页
In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the ... In this work, the electrochemical performance of LiNi0.8Co0.1Mn0.1O2(NCM811) has been investigated after cycling with various upper cutoff voltages. Noteworthily, electrochemical impedance of NCM811 declined with the increasing cycle number to high voltages. It was found that the decline of charge transfer impedance could be related to the structural and compositional change of cathode electrolyte interphase(CEI) of NCM811 when charging to high voltages, based on the characterization of electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The corresponding mechanism has also been proposed in this study. Specifically, due to the increasing roughness of cathode surface, the bottom of CEI film and cubic phase on cathode surface form a transition region mainly at high voltages, leading to the nonobvious boundary. This newly formed transition region at high voltages could promote the Li ion diffusion from electrolyte to cathode, then reducing charge transfer impedance. Additionally, the decrease of Li F on the surface of the cathode could also make a contribution to lower the interface impedance. This study delivers a different evolution of CEI on NCM811, and the impact of CEI evolution on electrochemical performance when charging to a high voltage. 展开更多
关键词 cathode electrolyte interface NCM811 OVERCHARGE Rock salt phase
在线阅读 下载PDF
Synergistic interphase modification with dual electrolyte additives to boost cycle stability of high nickel cathode for all-climate battery 被引量:1
14
作者 Zhangyating Xie Jiarong He +9 位作者 Zhiyong Xia Qinqin Cai Ziyuan Tang Jie Cai Yili Chen Xiaoqing Li Yingzhu Fan Lidan Xing Yanbin Shen Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期197-207,I0005,共12页
B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)t... B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)to facilitate the rapid Li+migration.Nevertheless,its wide-temperature application has been limited by the instability of B-derived CEI layer at high temperature.Herein,dual electrolyte additives,consisting of lithium tetraborate(Li_(2)TB)and 2,4-difluorobiphenyl(FBP),are proposed to boost the widetemperature performances of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)cathode.Theoretical calculation and electrochemical performances analyses indicate that Li_(2)TB and FBP undergo successive decomposition to form a unique dual-layer CEI.FBP acts as a synergistic filming additive to Li_(2)TB,enhancing the hightemperature performance of NCM cathode while preserving the excellent low-temperature cycle stability and the superior rate capability conferred by Li_(2)TB additive.Therefore,the capacity retention of NCM‖Li cells using optimal FBP-Li_(2)TB dual electrolyte additives increases to 100%after 200 cycles at-10℃,99%after 200 cycles at 25℃,and 83%after 100 cycles at 55℃,respectively,much superior to that of base electrolyte(63%/69%/45%).More surprisingly,galvanostatic c ha rge/discharge experiments at different temperatures reveal that NCM‖Li cells using FBP-Li_(2)TB additives can operate at temperatures ranging from-40℃to 60℃.This synergistic interphase modification utilizing dual electrolyte additives to construct a unique dual-layer CEI adaptive to a wide temperature range,provides valuable insights to the practical applications of NCM cathodes for all-climate batteries. 展开更多
关键词 Nickel-rich cathode Dual electrolyte additives Lithium-ion batteries Wide temperature application cathode electrolyte interphase
在线阅读 下载PDF
Durable semi-crystalline interphase engineering to stabilize high voltage Ni-rich cathode in dilute ether electrolyte
15
作者 Zhuangzhuang Cui Shunqiang Chen +7 位作者 Qingshun Nian Yecheng Li Yawei Chen Bing-Qing Xiong Zihong Wang Zixu He Shuhong Jiao Xiaodi Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期110-117,共8页
Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,an... Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,and limited progress has been made on building effective interphase to protect the cathode from the corrosion of the electrolyte.In this work,we construct a semi-crystalline interfacial layer on the surface of Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2)cathode that can achieve improved electrochemical stability in the highly corrosive chemical environment formed by the decomposition of ether molecules.Different from traditional brittle crystalline interphases,the optimized semi-crystalline layer with low modulus and high ionic conductivity can effectively relieve electrode strain and maintain the integrity of the interface layer.Due to this design,the continuous oxidation decomposition of ether-based electrolytes could be significantly suppressed and the battery shows outstanding cycling stability(84%capacity retention after 300 cycles).This article provides a solution to address the oxidation instability issue of ether-based electrolytes. 展开更多
关键词 cathode/electrolyte interphase Semi-crystalline Ether electrolyte High-voltage cathode Li-metal batteries
在线阅读 下载PDF
Application of aluminum industry solid waste in asphalt mixtures and its impact on performance:Current research and future perspectives
16
作者 Tianyi Yan Yongjun Meng +3 位作者 Xiaowan Luo Jinbin Chen Keyu Yan Dawei Wang 《Journal of Road Engineering》 2025年第4期554-571,共18页
Aluminum industrial solid waste represents a highly abundant yet underutilized resource.Its incorporation into asphalt pavement applications can effectively reduce the exploitation of natural resources and mitigate en... Aluminum industrial solid waste represents a highly abundant yet underutilized resource.Its incorporation into asphalt pavement applications can effectively reduce the exploitation of natural resources and mitigate environmental issues caused by waste accumulation.This paper focuses on typical solid waste resources generated by the aluminum industry,summarizing the latest research progress in their application within the asphalt pavement industry and proposing key directions for future attention.The physicochemical properties of red mud(RM),spent aluminum electrolytic cathode materials,and secondary aluminum dross(SAD)are reviewed.The effects and mechanisms of RM,spent aluminum electrolytic cathode materials,and SAD on the performance of asphalt and its mixtures are elaborated.RM significantly enhances the aging resistance of asphalt,the hightemperature rheological properties of asphalt mastic,and the rutting resistance of asphalt mixtures.Spent aluminum electrolytic cathode materials require the removal of fluorides and cyanides before further application in asphalt pavement.SAD effectively improves the dynamic stability of asphalt mixtures.This review presents the first systematic summary of key scientific challenges and technical bottlenecks in the application of aluminum industrial solid waste in asphalt pavements.It clarifies that future research should prioritize waste pretreatment technologies,performance regulation mechanisms,and life cycle environmental impact assessments.These contributions provide essential theoretical foundations and technical guidance for advancing the resource utilization of aluminum industrial solid waste,holding substantial significance for promoting the development of green transportation infrastructure. 展开更多
关键词 Aluminum industry solid waste Asphalt mastic Asphalt mixtures Red mud Spent aluminum electrolytic cathode materials Secondary aluminum dross
在线阅读 下载PDF
Dual-salt electrolyte strategy enables stable interface reaction and high-performance lithium-ion batteries at low temperature
17
作者 Peng Wang Guanyu Zhao +10 位作者 Yicai Pan Yujing Li Chenxi Fu Shipeng Sun Junqi Gai Jinping Mu Xue Bai Xiaohui Li Jinfeng Sun Xiaodong Shi Rui He 《Chinese Chemical Letters》 2025年第11期502-507,共6页
Lithium-ion batteries(LIBs)are increasingly required to operate under harsh conditions,particularly at low-temperature condition.Developing novel electrolytes is a facile and effective approach to elevate the electroc... Lithium-ion batteries(LIBs)are increasingly required to operate under harsh conditions,particularly at low-temperature condition.Developing novel electrolytes is a facile and effective approach to elevate the electrochemical performances of LIBs at low temperature.Herein,a dual-salt electrolyte consisting of(lithium bis(trifluoromethanesulfonyl)imide(Li TFSI)and lithium difluoro(oxalato)borate(Li ODFB))is proposed to regulate the solvation structure of Li^(+) ions and improve the reaction kinetics under low temperature.Based on the comprehensive electrochemical tests and theoretical computations,the introduction of LiODFB component not only effectively benefits the formation of cathode electrolyte interface(CEI)layer on the surface of LiFePO_(4) electrode,but also inhibits the chemical corrosion effect of Li TFSIcontaining electrolytes on Al foil.As expected,the optimized Li||LiFePO_(4) cells can display high reversible capacity of 117.0 m Ah/g after 100 cycles at-20℃.This work provides both theoretical basis and experimental guidance for the rational design of low-temperature resistant electrolytes. 展开更多
关键词 Dual-salt electrolyte Solvation structure cathode electrolyte interface layer Low-temperature performance Lithium-ion batteries
原文传递
New electrolyte concept: Compact ion-pair aggregate electrolyte
18
作者 Jing Guo 《Chinese Chemical Letters》 2025年第4期5-6,共2页
Lithium metal batteries (LMBs) show great potential in delivering high energy density (>500 Wh/kg) with cycling [1]. The cycling life of LMBs is mainly improved by regulating the composition and structure of solid/... Lithium metal batteries (LMBs) show great potential in delivering high energy density (>500 Wh/kg) with cycling [1]. The cycling life of LMBs is mainly improved by regulating the composition and structure of solid/cathode electrolyte interphase(SEI/CEI) with electrolytes [2]. However, both Li anode and transition metal oxide cathode have high interfacial reactivity at extreme voltages, which highly needs compatible electrolytes.Recently, localized high-concentration electrolytes (LHCEs) have promisingly stabilized the dual electrodes of high-voltage LMBs[3]. 展开更多
关键词 interfacial reactivity li anode compact ion pair aggregate electrolyte solid cathode electrolyte interphase lithium metal batteries transition metal oxide cathode cycling life high energy density
原文传递
Improving Na_(3)V_(2)(PO_(4))_(2)F_(3)half-cell performance with NaBF_(4)-enhanced sodium difluoro(oxalato)borate electrolyte
19
作者 Jia Zhang Jianwei Li +2 位作者 Guofeng Jia Huaiyou Wang Min Wang 《Journal of Energy Chemistry》 2025年第3期340-352,共13页
The global shift towards low-carbon energy storage has increased interest in sodium-ion batteries(SIBs)as a safer,cost-effective alternative to lithium-ion batteries.However,the commercial viability has been limited b... The global shift towards low-carbon energy storage has increased interest in sodium-ion batteries(SIBs)as a safer,cost-effective alternative to lithium-ion batteries.However,the commercial viability has been limited by compatibility issues between high-energy-density cathode materials,such as Na_(3)V_(2)(PO_(4))_(2)F_(3)(NVPF),and high-voltage electrolytes.Addressing the challenges,H-NaODFB(comprising 93.91%NaODFB and 5.85%NaBF_(4))electrolyte significantly improves the electrochemical performance and stability of NVPF cathodes,Na/NVPF half-cells using H-NaODFB electrolyte retained 92.4%capacity after 900cycles,while Na/Na symmetric cells demonstrated a cycle life exceeding 600 h at 0.5 mA cm^(-2).The superior performance is attributed to improved Na^(+)(de)intercalation reversibility,lower interfacial impedance(619.8 vs.10,650.0Ω),and faster reaction kinetics compared to NaODFB alone.Advanced time of flight-secondary ion mass spectrometry(TOF-SIMS),X-ray photoelectron spectroscopy(XPS)and aberration corrected transmission electron microscope(AC-TEM),combined with first-principles calculations,revealed that NaBF_(4)in the H-NaODFB electrolyte plays a critical role in forming a stable cathode electrolyte interphase(CEI).The CEI consists of an initial inorganic and organic layer,followed by a fluoroborate layer,and finally a stable organic-inorganic polymeric layer,enhancing electrode stability and preventing over-oxidation.These findings provide valuable insights for designing high-performance electrolytes for SIBs. 展开更多
关键词 Sodium-ion batteries NaODFB-based electrolyte Na_(3)V_(2)(PO_(4))_(2)F_(3) High-voltage cathode electrolyte interphase
在线阅读 下载PDF
Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive 被引量:6
20
作者 Juan Shi Lina Ding +5 位作者 Yanhua Wan Liwei Mi Linjie Chen Dan Yang Yuxiong Hu Weihua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期650-655,I0016,共7页
Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-pot... Application of sodium-ion batteries is suppressed due to the lack of appropriate electrolytes matching cathode and anode simultaneously.Ether-based electrolytes,preference of anode materials,cannot match with high-potential cathodes failing to apply in full cells.Herein,vinylene carbonate(VC)as an additive into NaCF_(3) SO_(3)-Diglyme(DGM)could make sodium-ion full cells applicable without preactivation of cathode and anode.The assembled FeS@C||Na3 V2(PO_(4))_(3)@C full cell with this electrolyte exhibits long term cycling stability and high capacity retention.The deduced reason is additive VC,whose HOMO level value is close to that of DGM,not only change the solvent sheath structure of Na^(+),but also is synergistically oxidized with DGM to form integrity and consecutive cathode electrolyte interphase on Na3 V2(PO_(4))_(3)@C cathode,which could effectively improve the oxidative stability of electrolyte and prevent the electrolyte decomposition.This work displays a new way to optimize the sodium-ion full cell seasily with bright practical application potential. 展开更多
关键词 cathode electrolyte interphase Sodium-ion batteries Full cell Ether-based electrolyte Vinylene carbonate DFT calculation
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部