The contamination of wastewater with organic pollutants and nitrogen compounds poses significant environmental challenges.The primary objective of wastewater treatment is the simultaneous denitrification and decarboni...The contamination of wastewater with organic pollutants and nitrogen compounds poses significant environmental challenges.The primary objective of wastewater treatment is the simultaneous denitrification and decarbonization of ammonia nitrogen and organics into harmless by-products.This study presents a novel method for the directional generation of chlorine radical species like·ClO and·Cl using electro-reactive membranes(EMs)known as RuO_(2)@PbO_(2)-M,which were fabricated using an electro-deposition coupled template approach.This method facilitates the rapid and efficient conversion of ammonia to nitrogen and concurrently reduces the chemical oxygen demand in the effluent.Our system achieved ultra-efficient simultaneous denitrification and decarbonization with minimal energy consumption in single-filtration mode,thereby eliminating the need for chemical precursors.We elucidate the formation pathway of·ClO and·Cl during the electrochemical oxidation process involving RuO_(2)@PbO_(2)-M,where·Cl generated from RuO_(2)reacts with·OH from PbO_(2)under hypochlorous acid conditions,thereby enhancing nitrogen and carbon removal.These findings highlight a novel electro-filtration and an innovative reactive membrane design for·ClO synthesis,which provides a new research framework for the concurrent removal of nitrogen and carbon,and offers a promising solution to enhance wastewater treatment efficiency.展开更多
基金supported by the National Natural Science Foundation of China(52270043)the National Key Research and Development Program of China(2023YFE0113800 and 2024YFC3715000)the Natural Science Foundation of Beijing Municipality(8242030).
文摘The contamination of wastewater with organic pollutants and nitrogen compounds poses significant environmental challenges.The primary objective of wastewater treatment is the simultaneous denitrification and decarbonization of ammonia nitrogen and organics into harmless by-products.This study presents a novel method for the directional generation of chlorine radical species like·ClO and·Cl using electro-reactive membranes(EMs)known as RuO_(2)@PbO_(2)-M,which were fabricated using an electro-deposition coupled template approach.This method facilitates the rapid and efficient conversion of ammonia to nitrogen and concurrently reduces the chemical oxygen demand in the effluent.Our system achieved ultra-efficient simultaneous denitrification and decarbonization with minimal energy consumption in single-filtration mode,thereby eliminating the need for chemical precursors.We elucidate the formation pathway of·ClO and·Cl during the electrochemical oxidation process involving RuO_(2)@PbO_(2)-M,where·Cl generated from RuO_(2)reacts with·OH from PbO_(2)under hypochlorous acid conditions,thereby enhancing nitrogen and carbon removal.These findings highlight a novel electro-filtration and an innovative reactive membrane design for·ClO synthesis,which provides a new research framework for the concurrent removal of nitrogen and carbon,and offers a promising solution to enhance wastewater treatment efficiency.