The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using in...The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.展开更多
Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods rema...Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods remains challenging,as it requires the estimation of more than eight parameters.Assuming the reservoir to be a weakly anisotropic ORT medium with small contrasts in the background elastic parameters,a new azimuthal elastic impedance equation was first derived using parameter combinations and mathematical approximations.This equation exhibited almost the same accuracy as the original equation and contained only six model parameters:the compression modulus,anisotropic shear modulus,anisotropic compression modulus,density,normal fracture weakness,and tangential fracture weakness.Subsequently,a stepwise inversion method using second-order derivatives of the elastic impedance was developed to estimate these parameters.Moreover,the Thomsen anisotropy parameter,epsilon,was estimated from the inversion results using the ratio of the anisotropic compression modulus to the compression modulus.Synthetic examples with moderate noise and field data examples confirm the feasibility and effectiveness of the inversion method.The proposed method exhibited accuracy similar to that of previous inversion strategies and could predict richer vertical fracture information.Ultimately,the method was applied to a three-dimensional work area,and the predictions were consistent with logging and geological a priori information,confirming the effectiveness of this method.Summarily,the proposed stepwise inversion method can alleviate the uncertainty of multi-parameter inversion in ORT medium,thereby improving the reliability of fracture detection.展开更多
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp...This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.展开更多
The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a ...The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%.展开更多
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material...We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.展开更多
To analyze the band gap characteristics of phononic crystals,a two-dimensional phononic crystal plate model with an elastic foundation was first established.The plane wave expansion method was used to compute the disp...To analyze the band gap characteristics of phononic crystals,a two-dimensional phononic crystal plate model with an elastic foundation was first established.The plane wave expansion method was used to compute the dispersion curves of this phononic crystal model,and the results were compared with those from the finite element method to verify their accuracy.Subsequently,a parameter study explored the effects of the elastic foundation coeffi-cient and coverage ratio on the band gap.The results indicate that as the coverage ratio of the elastic foundation increases,the band gap significantly expands,reaching its maximum value at 100%coverage.Additionally,as the elastic foundation stiffness increases,the band gap gradually widens and converges toward fixed boundary conditions.The study also investigated the band gap of phononic crystal plates with defects,finding that the vibrational energy concentrates at the defect unit cell.Furthermore,the defect band frequency can be effectively modulated by adjusting the coefficient of the elastic foundation,providing a theoretical basis for achieving efficient energy conversion.展开更多
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam...Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult...With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult todescribe anisotropic media containing fluid, such as fractures containing gas, shales containing water Based onBlot theory about two-phase anisotropy, with the use of elastic plane wave equations, we get Christoffel equations.We calculate and analyze the effects of frequency on phase velocity, attenuation, amplitude ratio and polarizationdirection of elastic waves of two-phase, transversely isotropic media. Results show that frequency affects slow Pwave the greatest among the four kinds of waves, i.e., fast P wave, slow P wave, fast S wave and slow S wave.Fluid phase amplitude to solid phase amplitude ratio of fast P wave, fast S wave and slow S wave approaches unitfor large dissipation coefficients. Polarization analysis shows that polarization direction of fluid phase displacement is different from, not parallel to or reverse to, that of solid phase displacement in two-phase anisotropic media.展开更多
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the f...A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.展开更多
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical sol...Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.展开更多
The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition a...The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...展开更多
The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data...The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models.展开更多
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR...A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.展开更多
With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their conta...With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.展开更多
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar...In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.展开更多
A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the co...A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.展开更多
基金funded by Vice Chancellor of Research at Shiraz University(grant 3GFU2M1820).
文摘The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results.
基金sponsorship of the National Natural Science Foundation of China(42430809,42274157,42030103,42404132)the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China)(SKLDOG2024-ZYTS-02)+5 种基金the Postdoctoral Fellowship Program of CPSF(GZB20240850)the Postdoctoral Project of Qingdao(QDBSH20240102082)the Fundamental Research Funds for the Central Universities(24CX07004A,24CX06036A)the CNPC Innovation Fund(2024DQ02-0505,2024DQ02-0136)the Innovation fund project for graduate student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities(24CX04002A).
文摘Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods remains challenging,as it requires the estimation of more than eight parameters.Assuming the reservoir to be a weakly anisotropic ORT medium with small contrasts in the background elastic parameters,a new azimuthal elastic impedance equation was first derived using parameter combinations and mathematical approximations.This equation exhibited almost the same accuracy as the original equation and contained only six model parameters:the compression modulus,anisotropic shear modulus,anisotropic compression modulus,density,normal fracture weakness,and tangential fracture weakness.Subsequently,a stepwise inversion method using second-order derivatives of the elastic impedance was developed to estimate these parameters.Moreover,the Thomsen anisotropy parameter,epsilon,was estimated from the inversion results using the ratio of the anisotropic compression modulus to the compression modulus.Synthetic examples with moderate noise and field data examples confirm the feasibility and effectiveness of the inversion method.The proposed method exhibited accuracy similar to that of previous inversion strategies and could predict richer vertical fracture information.Ultimately,the method was applied to a three-dimensional work area,and the predictions were consistent with logging and geological a priori information,confirming the effectiveness of this method.Summarily,the proposed stepwise inversion method can alleviate the uncertainty of multi-parameter inversion in ORT medium,thereby improving the reliability of fracture detection.
基金Supported by the National Natural Science Foundation of China(Nos.12272056 and 11832002)。
文摘This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.
文摘The precise computation of nanoelectromechanical switches’(NEMS)multi-physical interactions requires advanced numerical models and is a crucial part of the development of micro-and nano-systems.This paper presents a novel compound numerical method to study the instability of a functionally graded(FG)beam-type NEMS,considering surface elasticity effects as stated by Gurtin-Murdoch theory in an Euler-Bernoulli beam.The presented method is based on a combination of the Method of Adjoints(MoA)together with the Bézier-based multistep technique.By utilizing the MoA,a boundary value problem(BVP)is turned into an initial value problem(IVP).The resulting IVP is then solved by employing a cost-efficient multi-step process.It is demonstrated that the mentioned method can arrive at a high level of accuracy.Furthermore,it is revealed that the stability of the presented methodology is far better than that of other common multi-step methods,such as Adams-Bashforth,particularly at higher step sizes.Finally,the effects of axially functionally graded(FG)properties on the pull-in phenomenon and the main design parameters of NEMS,including the detachment length,are inspected.It was shown that the main parameter of design is the modulus of elasticity of the material,as Silver(Ag),which had better mechanical properties,showed almost a 6%improvement compared to aluminum(Al).However,by applying the correct amount of material with sturdier surface parameters,such as Aluminum(Al),at certain points,the nanobeams’functionality can be improved even further by around 1.5%.
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.
基金Funded by Demonstration Platform for the Production and Application of Key Materials for High-grade CNC Machine Tools(No.2020-370104-34-03-043952)。
文摘We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.
基金The National Natural Science Foundation of China(No.12002086)。
文摘To analyze the band gap characteristics of phononic crystals,a two-dimensional phononic crystal plate model with an elastic foundation was first established.The plane wave expansion method was used to compute the dispersion curves of this phononic crystal model,and the results were compared with those from the finite element method to verify their accuracy.Subsequently,a parameter study explored the effects of the elastic foundation coeffi-cient and coverage ratio on the band gap.The results indicate that as the coverage ratio of the elastic foundation increases,the band gap significantly expands,reaching its maximum value at 100%coverage.Additionally,as the elastic foundation stiffness increases,the band gap gradually widens and converges toward fixed boundary conditions.The study also investigated the band gap of phononic crystal plates with defects,finding that the vibrational energy concentrates at the defect unit cell.Furthermore,the defect band frequency can be effectively modulated by adjusting the coefficient of the elastic foundation,providing a theoretical basis for achieving efficient energy conversion.
基金supported by the National Natural Science Foundation of China (Grant Nos.12164019,11991060,12088101,and U1930402)the Natural Science Foundation of Jiangxi Province of China (Grant No.20212BAB201017).
文摘Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult todescribe anisotropic media containing fluid, such as fractures containing gas, shales containing water Based onBlot theory about two-phase anisotropy, with the use of elastic plane wave equations, we get Christoffel equations.We calculate and analyze the effects of frequency on phase velocity, attenuation, amplitude ratio and polarizationdirection of elastic waves of two-phase, transversely isotropic media. Results show that frequency affects slow Pwave the greatest among the four kinds of waves, i.e., fast P wave, slow P wave, fast S wave and slow S wave.Fluid phase amplitude to solid phase amplitude ratio of fast P wave, fast S wave and slow S wave approaches unitfor large dissipation coefficients. Polarization analysis shows that polarization direction of fluid phase displacement is different from, not parallel to or reverse to, that of solid phase displacement in two-phase anisotropic media.
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.
基金the National Natural Science Foundation of China(No.12172169)the China Scholarship Council(CSC)(No.202006830038)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.
文摘Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.
文摘The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...
基金supported by the National Science and Technology Major Project of China(Grant No. 2011ZX05004-003,2011ZX05014-006-006)the National Key Basic Research Program of China(Grant No. 2013CB228602)the Natural Science Foundation of China(Grant No. 40974066)
文摘The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models.
基金supported by the National Natural Science Foundation of China (No. 50768001)the Foundation of New Century Excellent Talents in University (No. NCET-04-0834)the Guangxi Natural Science Foundation (No. 0728026)
文摘A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.
基金Project(U1234211)supported by the National Natural Science Foundation of ChinaProject(2013G009-B)supported by China Railway Corporation
文摘With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.
基金supported by the National Natural Science Foundation of China (Grant No.11026223)the Shanghai Leading Academic Discipline Project,China (Grant No.S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No.SHUCX112359)
文摘In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
基金The project supported by the National Natural Science Foundation of China (19772025)
文摘A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.