Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi...Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.展开更多
The El Pintado 1 Silurian section in Seville Province,Spain,described by Loydell et al.(2015),has been ratified by the IUGS as the replacement GSSP for the base of the Telychian Stage,to replace the Cefn Cerig quarry ...The El Pintado 1 Silurian section in Seville Province,Spain,described by Loydell et al.(2015),has been ratified by the IUGS as the replacement GSSP for the base of the Telychian Stage,to replace the Cefn Cerig quarry section in the Llandovery area of Wales,which was found to be within a sedimentary mélange and therefore not a continuous section.No section other than El Pintado 1 has been found to be continuously fossiliferous across the Aeronian/Telychian boundary.展开更多
El Ni?o–Southern Oscillation(ENSO) is an oscillation of the ocean–atmosphere system in the tropical Pacific, which is argued to be energized by high-frequency stochastic atmospheric disturbances. Among these disturb...El Ni?o–Southern Oscillation(ENSO) is an oscillation of the ocean–atmosphere system in the tropical Pacific, which is argued to be energized by high-frequency stochastic atmospheric disturbances. Among these disturbances, westerly wind bursts(WWBs) play a crucial role in the development of El Ni?o by generating eastward-propagating downwelling Kelvin waves and suppressing the thermocline in the central-eastern equatorial Pacific. The present work elucidates distinct seasonal evolutions of WWBs during cyclic and noncyclic El Ni?o events, and their association with the local sea surface temperature anomalies(SSTAs). For noncyclic El Ni?o events, WWBs prevail over the western-central equatorial Pacific during spring of the developing year, accompanied by local warming SSTAs. In contrast, active WWBs cannot be observed until the developing summer for cyclic El Ni?o events. Significant differences in high-frequency WWBs and associated local deep convection appear in the developing spring season of noncyclic and cyclic El Ni?o events. These differences are closely linked to local SSTAs in the western-central equatorial Pacific via the stimulation of atmospheric deep convection,preceding the full manifestation of ENSO-associated large-scale SSTAs in the central-eastern tropical Pacific. The observed difference in WWBs for noncyclic and cyclic El Ni?o events and its association with the western-central equatorial Pacific SSTAs is realistically reproduced in a coupled general circulation model. This study enhances our comprehension of El Ni?o development by illustrating the intricate connection between WWBs and El Ni?o evolution from the ENSO cycle perspective.展开更多
Understanding plant community assembly is crucial for effective ecosystem conservation and restoration.The ecological filter framework describes community assembly as a process shaped by dispersal,environmental,and bi...Understanding plant community assembly is crucial for effective ecosystem conservation and restoration.The ecological filter framework describes community assembly as a process shaped by dispersal,environmental,and biotic filters.Additionally,functional traits and phylogenetic relationships are increasingly recognized as important factors influencing species coexistence and community structure.However,both the ecological filter framework and the roles of functional traits and phylogeny in community assembly remain underexplored in the Algerian steppes—particularly in the El Bayadh region,where ongoing vegetation degradation threatens ecosystem stability.This study applied Hierarchical Modeling of Species Communities(HMSC)as an integrative approach to assess how ecological filters influence plant community assembly in the El Bayadh steppe and to evaluate the roles of functional traits and phylogenetic relationships in this process.Environmental data—including soil properties,topography,precipitation,and land use types(grazing and exclosure)—were collected across 50 plots in April and October,2023,along with functional traits from 24 species.These traits include root length,leaf area,specific leaf area,clonality,life history,and seed mass.HMSC results revealed that soil properties and precipitation were the primary drivers of community structure,while sand height and elevation had a moderate influence.In contrast,competition and grazing played relatively minor roles.Species responses to environmental covariates were heterogeneous:soil fertility and texture had mixed effects,benefiting some species while limiting others;sand encroachment and precipitation variability generally had negative impacts,whereas grazing exclusion favored many species.A weak phylogenetic signal was recorded,indicating that community assembly was driven more by environmental filtering than by shared evolutionary history.Functional trait responses to environmental variation reflected plant strategies that balanced resource acquisition and conservation.Specifically,seed mass,leaf area,and root length increased under higher soil moisture and nutrient availability but declined in response to salinity,precipitation variability,and sand height.Clonality and perennial life history traits enhanced the survival of plant species under harsh conditions.Overall,this study provides a holistic understanding of community assembly processes in the El Bayadh steppe and offers valuable insights for ecosystem management and restoration in arid and degraded ecosystem environments.展开更多
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana...In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast.展开更多
We used the ocean reanalysis dataset SODA 2.2.4 to investigate the relationship between the interior branch of subtropical-tropical cells(STCs)in the Pacific Ocean and El Nino-Southern Oscillation(ENSO)over interdecad...We used the ocean reanalysis dataset SODA 2.2.4 to investigate the relationship between the interior branch of subtropical-tropical cells(STCs)in the Pacific Ocean and El Nino-Southern Oscillation(ENSO)over interdecadal timescales between 1930 and 2010,as well as the possible mechanisms involved.Interior transport within the upper pycnocline layers of STCs(InSTC)along 9°S(InSTC9s)shows a significant correlation of 0.54 with ENSO over the study period.However,there is an interdecadal shift in the relationship between InSTC along 9°N(InSTC9n)and ENSO.The correlation coefficient between InSTC9n and ENSO is not statistically significant between 1930 and 1965(PD1),but is as high as 0.68(significant at the 95% confidence level)between 1965 and 2010(PD2).Composite and regression analysis suggests that this shift may be caused by the relationship between InSTC 9 n and the tropical wind field.During PD1,InSTC9n was driven primarily by the local wind field outside equatorial region,with a relatively weak response to the equatorial wind related to ENSO.In contrast,during PD2,the wind field associated with InSTC 9 n showed a similar spatial distribution to that of ENSO within the equatorial region,indicating a close relationship between InSTC9n and ENSO.The wind stress curl associated with ENSO drives the anomalous InSTC9n in off-equatorial regions,whose signal can propagate westward in the form of Rossby wave and modulate the thermal structure of the tropical Pacific,favoring the development of ENSO.The possible connection between the Atlantic Multidecadal Oscillation(AMO)and interdecadal changes in the ENSO-InSTC9n relationship was also examined.There is a significant connection between the AMO and the interdecadal change in the relationship between ENSO and InSTC9n;however,the associated mechanism remains to be explored in future studies.展开更多
Understanding the catch composition of multispecies fisheries is fundamental to effective spatial fishery management.In the Equatorial Western and Central Pacific Ocean(EWCPO),the main catches of the tuna purse-seine ...Understanding the catch composition of multispecies fisheries is fundamental to effective spatial fishery management.In the Equatorial Western and Central Pacific Ocean(EWCPO),the main catches of the tuna purse-seine fishery include skipjack tuna(Katsuwonus pelamis),yellowfin tuna(Thunnus albacares),and bigeye tuna(Thunnus obesus).Studying the spatiotemporal distribution of the catch composition in the context of climate change contributes to the sustainable development of this fishery.Our study analyzed purse seine fishery data and environmental data from 1997 to 2019,using a random forest model to explore the changing mechanisms of catch composition under different El Niño-Southern Oscillation(ENSO)episodes with catch mean trophic level(CMTL)as the response variable.Emerging hot spot analysis was used to identify significant spatiotemporal hot(cold)spot areas.The results revealed two hot spot areas,namely the western hotspot area(WHA)and the eastern hotspot area(EHA),and two cold spot areas,namely the northern cold spot area(NCA)and the southern cold spot area(SCA).EHA spans the entire central Pacific east of 170°E among different ENSO episodes,expanding and contracting in tandem with the 28℃isotherm.WHA is mainly influenced by surface organic matter and the Western Boundary Currents and remains among different ENSO episodes.NCA is formed by the westerly anomalies and positive wind stress curl anomalies and exists only under La Niña episodes.SCA persists within the unproductive South Equatorial Current(SEC)and remains stable among different ENSO episodes.Our study contributes to revealing the spatiotemporal dynamics in tuna catch composition and their relationships with environmental factors and interspecies competition,providing valuable insights for ecosystem-based dynamic fishery management.展开更多
Tropidacris spp. represent the largest known group among acridoids. Their presence ranges from southeastern Mexico and has so far been confirmed only in tropical habitats. This publication seeks to highlight the curre...Tropidacris spp. represent the largest known group among acridoids. Their presence ranges from southeastern Mexico and has so far been confirmed only in tropical habitats. This publication seeks to highlight the current and potential challenges associated with their presence. For decades, the use of chemical insecticides has been the primary method for controlling locust populations, though these substances pose significant risks to human health and the environment. Recent research efforts are directed toward developing control methods that are less detrimental to both ecological and human health, such as biopesticides derived from pathogenic fungi, plant extracts, and strategically prescribed burns. Satellite surveillance enables the monitoring of the origination and progression of outbreaks to inform control strategy selection.展开更多
Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episod...Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield(ANS)during the Late Neoproterozoic.On a petrographic basis,the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite,syenogranite,and alkali feldspar granite.The analyses of muscovite,biotite,garnet,and apatite reveal the magmatic nature of the studied leucogranite.The investigated leucogranite,pegmatite,and aplite are alkali-calcic,calc-alkaline,and peraluminous.The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite.These studied rocks show a slight enrichment in light rare-earth elements(LREEs)and large-ion lithophile elements(LILE,especially Rb and Th),with an insignificant depletion of heavy rareearth elements(HREEs).On a geochemical basis,the leucogranite,pegmatite,and aplite in the study area crystallized from multiple-sourced melts that include mafic,metagraywake,and pelitic.They were derived from melts generated at crystallization temperatures around 568-900℃ for leucogranite,553-781℃ for pegmatite,and 639-779℃ for aplite based on the Zr saturation geothermometers,and at a pressure around 0.39-0.48 GPa,i.e.shallow depth intrusions.The studied felsic rocks have strong negative Eu anomalies,which are very consistent with an upper crust composition,indicating fractionation of feldspar cumulates.Also,they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization.Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn-to post-collisional granite,pegmatite,and aplite.An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model.Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages.展开更多
Using a reanalysis dataset and Coupled Model Intercomparison Project Phase 6(CMIP6) models, this study investigated the southern and northern modes of the East Asian winter monsoon(EAWM) and their respective relations...Using a reanalysis dataset and Coupled Model Intercomparison Project Phase 6(CMIP6) models, this study investigated the southern and northern modes of the East Asian winter monsoon(EAWM) and their respective relationships with the El Ni?o–Southern Oscillation(ENSO). The EAWM northern mode(EAWM_N) exhibited a consistent and strong connection with the mid-and high-latitude atmospheric circulation during 1979–2013, resembling the Eurasian teleconnection pattern. The positive phase of this pattern enhanced the sea-land pressure gradient across the mid-latitude East Asia and strengthened northerly winds flowing from high latitudes to South China, resulting in a strong EAWM_N. The relationship between the EAWM_N and ENSO shifted from insignificant to significant in the late 1990s, coinciding with a westward transition of the Walker circulation. In contrast, the EAWM southern mode(EAWM_S) was closely associated with an anomalous cyclone over the Philippine Sea and exhibited a stable, robust inverse correlation with ENSO.Projections from 12 CMIP6 models indicated that the unstable negative correlation of EAWM_N with ENSO would intensify, while the robust linkage between EAWM_S and ENSO was expected to persist under both the SSP1-2.6 and SSP5-8.5 scenarios. Additionally, increased future variability in the Ni?o 3.4 index, driven by external forcing, corresponded well to enhanced variability of EAWM_S. These findings underscore the necessity for further research into the distinct behaviors of the northern and southern EAWM modes under the background of ongoing climate warming.展开更多
基金Supported by the Laoshan Laboratory(No.LSKJ 202202404)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42000000)+1 种基金the National Natural Science Foundation of China(NSFC)(No.42030410)the Startup Foundation for Introducing Talent of NUIST,and the Jiangsu Innovation Research Group(No.JSSCTD 202346)。
文摘Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.
基金funded by project PDI2021-125585NB-I00 of the Spanish Ministry of Science,Innovation and Universities‒Agencia Estatal de Investigacion.JF thanks the Grant Agency of the Czech Republic for support of his study(GA23-06198S).
文摘The El Pintado 1 Silurian section in Seville Province,Spain,described by Loydell et al.(2015),has been ratified by the IUGS as the replacement GSSP for the base of the Telychian Stage,to replace the Cefn Cerig quarry section in the Llandovery area of Wales,which was found to be within a sedimentary mélange and therefore not a continuous section.No section other than El Pintado 1 has been found to be continuously fossiliferous across the Aeronian/Telychian boundary.
基金supported by the National Nature Science Foundation of China (Grant No.42088101)。
文摘El Ni?o–Southern Oscillation(ENSO) is an oscillation of the ocean–atmosphere system in the tropical Pacific, which is argued to be energized by high-frequency stochastic atmospheric disturbances. Among these disturbances, westerly wind bursts(WWBs) play a crucial role in the development of El Ni?o by generating eastward-propagating downwelling Kelvin waves and suppressing the thermocline in the central-eastern equatorial Pacific. The present work elucidates distinct seasonal evolutions of WWBs during cyclic and noncyclic El Ni?o events, and their association with the local sea surface temperature anomalies(SSTAs). For noncyclic El Ni?o events, WWBs prevail over the western-central equatorial Pacific during spring of the developing year, accompanied by local warming SSTAs. In contrast, active WWBs cannot be observed until the developing summer for cyclic El Ni?o events. Significant differences in high-frequency WWBs and associated local deep convection appear in the developing spring season of noncyclic and cyclic El Ni?o events. These differences are closely linked to local SSTAs in the western-central equatorial Pacific via the stimulation of atmospheric deep convection,preceding the full manifestation of ENSO-associated large-scale SSTAs in the central-eastern tropical Pacific. The observed difference in WWBs for noncyclic and cyclic El Ni?o events and its association with the western-central equatorial Pacific SSTAs is realistically reproduced in a coupled general circulation model. This study enhances our comprehension of El Ni?o development by illustrating the intricate connection between WWBs and El Ni?o evolution from the ENSO cycle perspective.
基金supported by the Foundation of the University of Quebec in Abitibi-Témiscamingue(FUQAT)Quebec Research Fund(FRQ)(2021-SE7-282961)。
文摘Understanding plant community assembly is crucial for effective ecosystem conservation and restoration.The ecological filter framework describes community assembly as a process shaped by dispersal,environmental,and biotic filters.Additionally,functional traits and phylogenetic relationships are increasingly recognized as important factors influencing species coexistence and community structure.However,both the ecological filter framework and the roles of functional traits and phylogeny in community assembly remain underexplored in the Algerian steppes—particularly in the El Bayadh region,where ongoing vegetation degradation threatens ecosystem stability.This study applied Hierarchical Modeling of Species Communities(HMSC)as an integrative approach to assess how ecological filters influence plant community assembly in the El Bayadh steppe and to evaluate the roles of functional traits and phylogenetic relationships in this process.Environmental data—including soil properties,topography,precipitation,and land use types(grazing and exclosure)—were collected across 50 plots in April and October,2023,along with functional traits from 24 species.These traits include root length,leaf area,specific leaf area,clonality,life history,and seed mass.HMSC results revealed that soil properties and precipitation were the primary drivers of community structure,while sand height and elevation had a moderate influence.In contrast,competition and grazing played relatively minor roles.Species responses to environmental covariates were heterogeneous:soil fertility and texture had mixed effects,benefiting some species while limiting others;sand encroachment and precipitation variability generally had negative impacts,whereas grazing exclusion favored many species.A weak phylogenetic signal was recorded,indicating that community assembly was driven more by environmental filtering than by shared evolutionary history.Functional trait responses to environmental variation reflected plant strategies that balanced resource acquisition and conservation.Specifically,seed mass,leaf area,and root length increased under higher soil moisture and nutrient availability but declined in response to salinity,precipitation variability,and sand height.Clonality and perennial life history traits enhanced the survival of plant species under harsh conditions.Overall,this study provides a holistic understanding of community assembly processes in the El Bayadh steppe and offers valuable insights for ecosystem management and restoration in arid and degraded ecosystem environments.
基金The fund from Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP310the National Natural Science Foundation of China under contract Nos 42227901 and 42475061the Key R&D Program of Zhejiang Province under contract No.2024C03257.
文摘In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast.
基金Supported by the National Natural Science Foundation of China(No.41976027)the Laoshan Laboratory(No.LSKJ202201601)。
文摘We used the ocean reanalysis dataset SODA 2.2.4 to investigate the relationship between the interior branch of subtropical-tropical cells(STCs)in the Pacific Ocean and El Nino-Southern Oscillation(ENSO)over interdecadal timescales between 1930 and 2010,as well as the possible mechanisms involved.Interior transport within the upper pycnocline layers of STCs(InSTC)along 9°S(InSTC9s)shows a significant correlation of 0.54 with ENSO over the study period.However,there is an interdecadal shift in the relationship between InSTC along 9°N(InSTC9n)and ENSO.The correlation coefficient between InSTC9n and ENSO is not statistically significant between 1930 and 1965(PD1),but is as high as 0.68(significant at the 95% confidence level)between 1965 and 2010(PD2).Composite and regression analysis suggests that this shift may be caused by the relationship between InSTC 9 n and the tropical wind field.During PD1,InSTC9n was driven primarily by the local wind field outside equatorial region,with a relatively weak response to the equatorial wind related to ENSO.In contrast,during PD2,the wind field associated with InSTC 9 n showed a similar spatial distribution to that of ENSO within the equatorial region,indicating a close relationship between InSTC9n and ENSO.The wind stress curl associated with ENSO drives the anomalous InSTC9n in off-equatorial regions,whose signal can propagate westward in the form of Rossby wave and modulate the thermal structure of the tropical Pacific,favoring the development of ENSO.The possible connection between the Atlantic Multidecadal Oscillation(AMO)and interdecadal changes in the ENSO-InSTC9n relationship was also examined.There is a significant connection between the AMO and the interdecadal change in the relationship between ENSO and InSTC9n;however,the associated mechanism remains to be explored in future studies.
基金The National Key Research and Development Program of China under contract No.2023YFD2401303.
文摘Understanding the catch composition of multispecies fisheries is fundamental to effective spatial fishery management.In the Equatorial Western and Central Pacific Ocean(EWCPO),the main catches of the tuna purse-seine fishery include skipjack tuna(Katsuwonus pelamis),yellowfin tuna(Thunnus albacares),and bigeye tuna(Thunnus obesus).Studying the spatiotemporal distribution of the catch composition in the context of climate change contributes to the sustainable development of this fishery.Our study analyzed purse seine fishery data and environmental data from 1997 to 2019,using a random forest model to explore the changing mechanisms of catch composition under different El Niño-Southern Oscillation(ENSO)episodes with catch mean trophic level(CMTL)as the response variable.Emerging hot spot analysis was used to identify significant spatiotemporal hot(cold)spot areas.The results revealed two hot spot areas,namely the western hotspot area(WHA)and the eastern hotspot area(EHA),and two cold spot areas,namely the northern cold spot area(NCA)and the southern cold spot area(SCA).EHA spans the entire central Pacific east of 170°E among different ENSO episodes,expanding and contracting in tandem with the 28℃isotherm.WHA is mainly influenced by surface organic matter and the Western Boundary Currents and remains among different ENSO episodes.NCA is formed by the westerly anomalies and positive wind stress curl anomalies and exists only under La Niña episodes.SCA persists within the unproductive South Equatorial Current(SEC)and remains stable among different ENSO episodes.Our study contributes to revealing the spatiotemporal dynamics in tuna catch composition and their relationships with environmental factors and interspecies competition,providing valuable insights for ecosystem-based dynamic fishery management.
文摘Tropidacris spp. represent the largest known group among acridoids. Their presence ranges from southeastern Mexico and has so far been confirmed only in tropical habitats. This publication seeks to highlight the current and potential challenges associated with their presence. For decades, the use of chemical insecticides has been the primary method for controlling locust populations, though these substances pose significant risks to human health and the environment. Recent research efforts are directed toward developing control methods that are less detrimental to both ecological and human health, such as biopesticides derived from pathogenic fungi, plant extracts, and strategically prescribed burns. Satellite surveillance enables the monitoring of the origination and progression of outbreaks to inform control strategy selection.
基金finational supported by the Foundation of Science,Technology and Innovation Funding Authority(STDF)(Award Number:47106Recipient:Mokhles K K.Azer)。
文摘Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield(ANS)during the Late Neoproterozoic.On a petrographic basis,the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite,syenogranite,and alkali feldspar granite.The analyses of muscovite,biotite,garnet,and apatite reveal the magmatic nature of the studied leucogranite.The investigated leucogranite,pegmatite,and aplite are alkali-calcic,calc-alkaline,and peraluminous.The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite.These studied rocks show a slight enrichment in light rare-earth elements(LREEs)and large-ion lithophile elements(LILE,especially Rb and Th),with an insignificant depletion of heavy rareearth elements(HREEs).On a geochemical basis,the leucogranite,pegmatite,and aplite in the study area crystallized from multiple-sourced melts that include mafic,metagraywake,and pelitic.They were derived from melts generated at crystallization temperatures around 568-900℃ for leucogranite,553-781℃ for pegmatite,and 639-779℃ for aplite based on the Zr saturation geothermometers,and at a pressure around 0.39-0.48 GPa,i.e.shallow depth intrusions.The studied felsic rocks have strong negative Eu anomalies,which are very consistent with an upper crust composition,indicating fractionation of feldspar cumulates.Also,they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization.Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn-to post-collisional granite,pegmatite,and aplite.An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model.Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages.
基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004)。
文摘Using a reanalysis dataset and Coupled Model Intercomparison Project Phase 6(CMIP6) models, this study investigated the southern and northern modes of the East Asian winter monsoon(EAWM) and their respective relationships with the El Ni?o–Southern Oscillation(ENSO). The EAWM northern mode(EAWM_N) exhibited a consistent and strong connection with the mid-and high-latitude atmospheric circulation during 1979–2013, resembling the Eurasian teleconnection pattern. The positive phase of this pattern enhanced the sea-land pressure gradient across the mid-latitude East Asia and strengthened northerly winds flowing from high latitudes to South China, resulting in a strong EAWM_N. The relationship between the EAWM_N and ENSO shifted from insignificant to significant in the late 1990s, coinciding with a westward transition of the Walker circulation. In contrast, the EAWM southern mode(EAWM_S) was closely associated with an anomalous cyclone over the Philippine Sea and exhibited a stable, robust inverse correlation with ENSO.Projections from 12 CMIP6 models indicated that the unstable negative correlation of EAWM_N with ENSO would intensify, while the robust linkage between EAWM_S and ENSO was expected to persist under both the SSP1-2.6 and SSP5-8.5 scenarios. Additionally, increased future variability in the Ni?o 3.4 index, driven by external forcing, corresponded well to enhanced variability of EAWM_S. These findings underscore the necessity for further research into the distinct behaviors of the northern and southern EAWM modes under the background of ongoing climate warming.