This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator ...This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficie...The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.展开更多
1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n co...1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the lin...The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the linear theory of porous piezoelectric materials are proved for the quasi-static electric field approximation. The uniqueness theorem is also proved without using the positive definiteness of the elastic field. An eigenvalue problem associated with free vibrations of a porous piezoelectric body is stud- ied using the abstract formulation. Some properties of operators are also proved. The problem of frequency shift due to small disturbances, based on an abstract formulation, is studied using a variational and operator approach. A perturbation analysis of a special ease is also given.展开更多
The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as ...The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.展开更多
In(relativistic)electronic structure methods,the quaternion matrix eigenvalue problem and the linear response(Bethe-Salpeter)eigenvalue problem for excitation energies are two frequently encoun-tered structured eigenv...In(relativistic)electronic structure methods,the quaternion matrix eigenvalue problem and the linear response(Bethe-Salpeter)eigenvalue problem for excitation energies are two frequently encoun-tered structured eigenvalue problems.While the former problem was thoroughly studied,the later problem in its most general form,namely,the complex case without assuming the positive definiteness of the electronic Hessian,was not fully understood.In view of their very similar mathematical structures,we examined these two problems from a unified point of view.We showed that the identification of Lie group structures for their eigenvectors provides a framework to design diagonalization algorithms as well as numerical optimizations techniques on the corresponding manifolds.By using the same reduction algorithm for the quaternion matrix eigenvalue problem,we provided a necessary and sufficient condition to characterize the different scenarios,where the eigenvalues of the original linear response eigenvalue problem are real,purely imaginary,or complex.The result can be viewed as a natural generalization of the well-known condition for the real matrix case.展开更多
Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpai...Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpair of a Hermitian matrix.The convergence theorems of these methods were established under two conditions imposed on the initial guesses for the target eigenvalue and eigenvector.In this paper,we show that these two conditions can be merged into a relaxed one,so the convergence conditions in these theorems can be weakened,and the resulting convergence theorems are applicable to a broad class of matrices.In addition,we give detailed discussions about the new convergence condition and the corresponding estimates of the convergence errors,leading to rigorous convergence theories for both the MRQI and the IMRQI.展开更多
Since the nonconforming finite elements(NFEs)play a significant role in approximating PDE eigenvalues from below,this paper develops a new and parallel two-level preconditioned Jacobi-Davidson(PJD)method for solving t...Since the nonconforming finite elements(NFEs)play a significant role in approximating PDE eigenvalues from below,this paper develops a new and parallel two-level preconditioned Jacobi-Davidson(PJD)method for solving the large scale discrete eigenvalue problems resulting from NFE discretization of 2mth(m=1.2)order elliptic eigenvalue problems.Combining a spectral projection on the coarse space and an overlapping domain decomposition(DD),a parallel preconditioned system can be solved in each iteration.A rigorous analysis reveals that the convergence rate of our two-level PJD method is optimal and scalable.Numerical results supporting our theory are given.展开更多
In this paper,an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains.Through a correction step,the augmented two-scale finite element...In this paper,an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains.Through a correction step,the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace.Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid,but the computational cost required by the former solution is much lower than that demanded by the latter.The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L^(2)(Ω)norm compared with the two-scale finite element method.展开更多
We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem(GEP).The layered piezo device is studied for resonance frequencies using different meshes,spar...We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem(GEP).The layered piezo device is studied for resonance frequencies using different meshes,sparse matrix representations,and numerical methods in COMSOL Multiphysics and ACELAN-COMPOS packages.Specifically,the matrix-vector and matrix-matrix product implementation for large sparse matrices is discussed.The shift-and-invert Lanczos method is used to solve the partial symmetric GEP numerically.Different solvers are compared in terms of the efficiency.The results of numerical experiments are presented.展开更多
An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained ex...An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained explicitly which plays an important role in the numerical analysis.And a sharp estimate on the algebraic system's condition number is established which behaves as N4s with respect to the polynomial degree N,where 2s is the fractional derivative order.The regularity estimate of solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces.Then the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily derived.Meanwhile,rigorous error estimates of the eigenvalues and eigenvectors are ob-tained.Numerical experiments are presented to demonstrate the accuracy and efficiency and to validate the theoretical results.展开更多
In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed t...In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed to determine the transmission eigenvalues within a certain wavenumber interval based on far-field measurements. Based on a prior information given by the linear sampling method, the neural network approach is proposed for the reconstruction of the unknown scatterer. We divide the wavenumber intervals into several subintervals, ensuring that each transmission eigenvalue is located in its corresponding subinterval. In each such subinterval, the wavenumber that yields the maximum value of the indicator functional will be included in the input set during the generation of the training data. This technique for data generation effectively ensures the consistent dimensions of model input. The refractive index and shape are taken as the output of the network. Due to the fact that transmission eigenvalues considered in our method are relatively small,certain super-resolution effects can also be generated. Numerical experiments are presented to verify the effectiveness and promising features of the proposed method in two and three dimensions.展开更多
In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicit...In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicitly restarted Arnoldi method and Jacobi-Davidson method,are modified with some complementary techniques to make them suitable for modal analysis.Detailed descriptions of the three algorithms are given.Based on these algorithms,a parallel solution procedure is established via the PANDA framework and its associated eigensolvers.Using the solution procedure on a machine equipped with up to 4800processors,the parallel performance of the three predominant methods is evaluated via numerical experiments with typical engineering structures,where the maximum testing scale attains twenty million degrees of freedom.The speedup curves for different cases are obtained and compared.The results show that the three methods are good for modal analysis in the scale of ten million degrees of freedom with a favorable parallel scalability.展开更多
Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved...Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved that there is no non-radial positive solution.展开更多
A two-level discretization method for eigenvalue problems is studied.Compared to the standard Galerkin finite element discretization technique performed on a fine gridthis method discretizes the eigenvalue problem on ...A two-level discretization method for eigenvalue problems is studied.Compared to the standard Galerkin finite element discretization technique performed on a fine gridthis method discretizes the eigenvalue problem on a coarse grid and obtains an improved eigenvector(eigenvalue) approximation by solving only a linear problem on the fine grid (or two linear problemsfor the case of eigenvalue approximation of nonsymmetric problems). The improved solution has theasymptotic accuracy of the Galerkin discretization solution. The link between the method and theiterated Galerkin method is established. Error estimates for the general nonsymmetric case arederived.展开更多
This paper discusses the sensitivity analysis of semisimple eigenvalues and associated eigen-matrix triples of regular quadratic eigenvalue problems analytically dependent on several parameters. The directional deriva...This paper discusses the sensitivity analysis of semisimple eigenvalues and associated eigen-matrix triples of regular quadratic eigenvalue problems analytically dependent on several parameters. The directional derivatives of semisimple eigenvalues are obtained. The average of semisimple eigenvalues and corresponding eigen-matrix triple are proved to be analytic, and their partial derivatives are given. On these grounds, the sensitivities of the semisimple eigenvalues and corresponding eigenvector matrices are defined.展开更多
Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a pos...Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a posteriori error estimate in ||·||1,Ω0 norm for conforming elements eigenfunction,which has not been studied in existing literatures.展开更多
Utilizing the properties of the smallest singular value of a matrix, we propose a new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigenvalue problems, and compare it with a known method. ...Utilizing the properties of the smallest singular value of a matrix, we propose a new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigenvalue problems, and compare it with a known method. We also present numerical experiments which illustrate our results.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.1236108412001130)。
文摘This paper is devoted to the Polynomial Preserving Recovery (PPR) based a posteriori error analysis for the second-order elliptic non-symmetric eigenvalue problem. An asymptotically exact a posteriori error estimator is proposed for solving the convection-dominated non-symmetric eigenvalue problem with non-smooth eigenfunctions or multiple eigenvalues. Numerical examples confirm our theoretical analysis.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金Science Developing Plan of Beijing Educational Committee, Beijing Natural Science Fund (No. 3022003), and NationalNatural Science Fund of China(No.50375002)
文摘The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.
文摘1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
基金the University Grant Commission for providing the financial support for this work (No. 8(42)/2010 (MRP/NRCB))
文摘The uniqueness theorem and the theorem of reciprocity in the linearized porous piezoelectricity are established under the assumption of positive definiteness of elastic and electric fields. General theorems in the linear theory of porous piezoelectric materials are proved for the quasi-static electric field approximation. The uniqueness theorem is also proved without using the positive definiteness of the elastic field. An eigenvalue problem associated with free vibrations of a porous piezoelectric body is stud- ied using the abstract formulation. Some properties of operators are also proved. The problem of frequency shift due to small disturbances, based on an abstract formulation, is studied using a variational and operator approach. A perturbation analysis of a special ease is also given.
文摘The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.
基金supported by the National Natural Science Foundation of China (No.21973003)the Beijing Normal University Startup Package
文摘In(relativistic)electronic structure methods,the quaternion matrix eigenvalue problem and the linear response(Bethe-Salpeter)eigenvalue problem for excitation energies are two frequently encoun-tered structured eigenvalue problems.While the former problem was thoroughly studied,the later problem in its most general form,namely,the complex case without assuming the positive definiteness of the electronic Hessian,was not fully understood.In view of their very similar mathematical structures,we examined these two problems from a unified point of view.We showed that the identification of Lie group structures for their eigenvectors provides a framework to design diagonalization algorithms as well as numerical optimizations techniques on the corresponding manifolds.By using the same reduction algorithm for the quaternion matrix eigenvalue problem,we provided a necessary and sufficient condition to characterize the different scenarios,where the eigenvalues of the original linear response eigenvalue problem are real,purely imaginary,or complex.The result can be viewed as a natural generalization of the well-known condition for the real matrix case.
基金F.Chen:Supported by the National Natural Science Foundation of China(No.11501038)the Science and Technology Planning Projects of Beijing Municipal Education Commission(No.KM201911232010 and No.KM201811232020),China+2 种基金C.-Q.Miao:Supported by the National Natural Science Foundation of China(No.11901361)G.V.Muratova:Supported by the Grant of the Government of the Russian Federation(No.075-15-2019-1928)the China-Russia(NSFC-RFBR)International Cooperative Research Project(No.11911530082 and No.19-51-53013).
文摘Bai et al.proposed the multistep Rayleigh quotient iteration(MRQI)as well as its inexact variant(IMRQI)in a recent work(Comput.Math.Appl.77:2396–2406,2019).These methods can be used to effectively compute an eigenpair of a Hermitian matrix.The convergence theorems of these methods were established under two conditions imposed on the initial guesses for the target eigenvalue and eigenvector.In this paper,we show that these two conditions can be merged into a relaxed one,so the convergence conditions in these theorems can be weakened,and the resulting convergence theorems are applicable to a broad class of matrices.In addition,we give detailed discussions about the new convergence condition and the corresponding estimates of the convergence errors,leading to rigorous convergence theories for both the MRQI and the IMRQI.
基金supported by the China Postdoctoral Science Foundation(No.2023M742662)supported by the National Natural Science Foundation of China(Grant Nos.12071350 and 12331015).
文摘Since the nonconforming finite elements(NFEs)play a significant role in approximating PDE eigenvalues from below,this paper develops a new and parallel two-level preconditioned Jacobi-Davidson(PJD)method for solving the large scale discrete eigenvalue problems resulting from NFE discretization of 2mth(m=1.2)order elliptic eigenvalue problems.Combining a spectral projection on the coarse space and an overlapping domain decomposition(DD),a parallel preconditioned system can be solved in each iteration.A rigorous analysis reveals that the convergence rate of our two-level PJD method is optimal and scalable.Numerical results supporting our theory are given.
基金supported by the National Key R&D Program of China under Grant Nos.2019YFA0709600 and 2019YFA0709601the National Natural Science Foundation of China under Grant No.12021001+2 种基金supported by the National Natural Science Foundation of China under Grant No.92270206supported by the National Natural Science Foundation of China(Grant No.11771467)the disciplinary funding of Central University of Finance and Economics.
文摘In this paper,an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains.Through a correction step,the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace.Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid,but the computational cost required by the former solution is much lower than that demanded by the latter.The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L^(2)(Ω)norm compared with the two-scale finite element method.
基金funded by a grant of the Russian Science Foundation N 22-21-00318,https://rscf.ru/project/22-21-00318/at Southern Federal University.
文摘We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem(GEP).The layered piezo device is studied for resonance frequencies using different meshes,sparse matrix representations,and numerical methods in COMSOL Multiphysics and ACELAN-COMPOS packages.Specifically,the matrix-vector and matrix-matrix product implementation for large sparse matrices is discussed.The shift-and-invert Lanczos method is used to solve the partial symmetric GEP numerically.Different solvers are compared in terms of the efficiency.The results of numerical experiments are presented.
基金supported by the National Natural Science Foundation of China(Grant No.12101325)and by the NUPTSF(Grant No.NY220162)The second author was supported by the National Natural Science Foundation of China(Grant Nos.12131005,11971016)+1 种基金The third author was supported by the National Natural Science Foundation of China(Grant No.12131005)The fifth author was supported by the National Natural Science Foundation of China(Grant Nos.12131005,U2230402).
文摘An efficient spectral-Galerkin method for eigenvalue problems of the integral fractional Laplacian on a unit ball of any dimension is proposed in this paper.The symmetric positive definite linear system is retained explicitly which plays an important role in the numerical analysis.And a sharp estimate on the algebraic system's condition number is established which behaves as N4s with respect to the polynomial degree N,where 2s is the fractional derivative order.The regularity estimate of solutions to source problems of the fractional Laplacian in arbitrary dimensions is firstly investigated in weighted Sobolev spaces.Then the regularity of eigenfunctions of the fractional Laplacian eigenvalue problem is readily derived.Meanwhile,rigorous error estimates of the eigenvalues and eigenvectors are ob-tained.Numerical experiments are presented to demonstrate the accuracy and efficiency and to validate the theoretical results.
基金supported by the Jilin Natural Science Foundation,China(No.20220101040JC)the National Natural Science Foundation of China(No.12271207)+2 种基金supported by the Hong Kong RGC General Research Funds(projects 11311122,12301420 and 11300821)the NSFC/RGC Joint Research Fund(project N-CityU 101/21)the France-Hong Kong ANR/RGC Joint Research Grant,A_CityU203/19.
文摘In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed to determine the transmission eigenvalues within a certain wavenumber interval based on far-field measurements. Based on a prior information given by the linear sampling method, the neural network approach is proposed for the reconstruction of the unknown scatterer. We divide the wavenumber intervals into several subintervals, ensuring that each transmission eigenvalue is located in its corresponding subinterval. In each such subinterval, the wavenumber that yields the maximum value of the indicator functional will be included in the input set during the generation of the training data. This technique for data generation effectively ensures the consistent dimensions of model input. The refractive index and shape are taken as the output of the network. Due to the fact that transmission eigenvalues considered in our method are relatively small,certain super-resolution effects can also be generated. Numerical experiments are presented to verify the effectiveness and promising features of the proposed method in two and three dimensions.
基金supported by the National Defence Basic Fundamental Research Program of China(Grant No.C1520110002)the Fundamental Development Foundation of China Academy Engineering Physics(Grant No.2012A0202008)
文摘In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicitly restarted Arnoldi method and Jacobi-Davidson method,are modified with some complementary techniques to make them suitable for modal analysis.Detailed descriptions of the three algorithms are given.Based on these algorithms,a parallel solution procedure is established via the PANDA framework and its associated eigensolvers.Using the solution procedure on a machine equipped with up to 4800processors,the parallel performance of the three predominant methods is evaluated via numerical experiments with typical engineering structures,where the maximum testing scale attains twenty million degrees of freedom.The speedup curves for different cases are obtained and compared.The results show that the three methods are good for modal analysis in the scale of ten million degrees of freedom with a favorable parallel scalability.
基金Supported by the Youth Foundations of National Education Commuttee the Committee on Science and Technology of Henan Province
文摘Existence and uniqueness results are obtained for positive radial solutions of a class of quasilinear elliptic equations in a N-ball or an annulus without monotone assumptions on the nonlinear term f.It is also proved that there is no non-radial positive solution.
文摘A two-level discretization method for eigenvalue problems is studied.Compared to the standard Galerkin finite element discretization technique performed on a fine gridthis method discretizes the eigenvalue problem on a coarse grid and obtains an improved eigenvector(eigenvalue) approximation by solving only a linear problem on the fine grid (or two linear problemsfor the case of eigenvalue approximation of nonsymmetric problems). The improved solution has theasymptotic accuracy of the Galerkin discretization solution. The link between the method and theiterated Galerkin method is established. Error estimates for the general nonsymmetric case arederived.
基金Supported by Shanghai Natural Science Fund(No.15ZR1408400)
文摘This paper discusses the sensitivity analysis of semisimple eigenvalues and associated eigen-matrix triples of regular quadratic eigenvalue problems analytically dependent on several parameters. The directional derivatives of semisimple eigenvalues are obtained. The average of semisimple eigenvalues and corresponding eigen-matrix triple are proved to be analytic, and their partial derivatives are given. On these grounds, the sensitivities of the semisimple eigenvalues and corresponding eigenvector matrices are defined.
基金supported by National Natural Science Foundation of China(Grant Nos.11201093 and 11161012)
文摘Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a posteriori error estimate in ||·||1,Ω0 norm for conforming elements eigenfunction,which has not been studied in existing literatures.
文摘Utilizing the properties of the smallest singular value of a matrix, we propose a new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigenvalue problems, and compare it with a known method. We also present numerical experiments which illustrate our results.