针对水下光线衰减、散射等影响导致水下目标检测效果不佳的问题,提出一种基于YOLOv8的水下目标检测框架ERMS-YOLOv8,提升水下目标检测性能。主干网络采用高效视觉transformer网络(efficient vision transformer,EfficientViT),增强模型...针对水下光线衰减、散射等影响导致水下目标检测效果不佳的问题,提出一种基于YOLOv8的水下目标检测框架ERMS-YOLOv8,提升水下目标检测性能。主干网络采用高效视觉transformer网络(efficient vision transformer,EfficientViT),增强模型对水下生物的特征提取能力,减少特征信息丢失;Neck部分采用高效重参数化广义特征金字塔网络(reparameterized generalized-directional feature pyramid network,RepGFPN),增强模型对水下生物高层语义和低级空间特征的提取和融合能力,使得模型获取更加丰富的特征信息;引入混合局部通道注意力机制(mixed local channel attention for object detection,MLCA),使得模型同时融合通道信息、空间信息、局部通道信息和全局通道信息,增强了模型的表征能力;引入可扩展交并比损失函数(scalable intersection over union loss,SIoU),提升模型对目标边界信息的提取能力,从而进一步提高检测精度。实验结果表明,改进后的算法在UPRC2021和DUO数据集上mAP值分别达到83.9%和84.4%,与基准YOLOv8算法相比都有提高,在水下目标检测中具有优越的性能。展开更多
针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同...针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。展开更多
文摘针对水下光线衰减、散射等影响导致水下目标检测效果不佳的问题,提出一种基于YOLOv8的水下目标检测框架ERMS-YOLOv8,提升水下目标检测性能。主干网络采用高效视觉transformer网络(efficient vision transformer,EfficientViT),增强模型对水下生物的特征提取能力,减少特征信息丢失;Neck部分采用高效重参数化广义特征金字塔网络(reparameterized generalized-directional feature pyramid network,RepGFPN),增强模型对水下生物高层语义和低级空间特征的提取和融合能力,使得模型获取更加丰富的特征信息;引入混合局部通道注意力机制(mixed local channel attention for object detection,MLCA),使得模型同时融合通道信息、空间信息、局部通道信息和全局通道信息,增强了模型的表征能力;引入可扩展交并比损失函数(scalable intersection over union loss,SIoU),提升模型对目标边界信息的提取能力,从而进一步提高检测精度。实验结果表明,改进后的算法在UPRC2021和DUO数据集上mAP值分别达到83.9%和84.4%,与基准YOLOv8算法相比都有提高,在水下目标检测中具有优越的性能。
文摘针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。