期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多传感器融合和改进EfficientNetV2-B0的电机故障诊断
1
作者 朱思成 孙宁 +3 位作者 王松雷 张佳宝 陈津奥 夏浩然 《兵工自动化》 北大核心 2025年第11期85-90,96,共7页
针对电机在发生故障时故障信号易被强噪声淹没、信号采集不全面且训练网络冗杂的问题,将融合多传感器信号和改进EfficientNetV2-B0的迁移学习模型引入到电机故障诊断中。传感器融合方法通过格拉姆角场(Gramian angular field,GAF)将1维... 针对电机在发生故障时故障信号易被强噪声淹没、信号采集不全面且训练网络冗杂的问题,将融合多传感器信号和改进EfficientNetV2-B0的迁移学习模型引入到电机故障诊断中。传感器融合方法通过格拉姆角场(Gramian angular field,GAF)将1维时间序列转换成图像,保证特征信息的完整性,没有时间依赖性,并利用Retinex增强和拉普拉斯金字塔分解的图像融合算法实现多源传感器信号的图像融合。针对EfficientNetV2-B0网络提出了添加深度可分离卷积(depthwise separable convolution,DSConv)和高效多尺度注意力(efficient multi-scale attention,EMA)的改进,并结合迁移学习(transfer learning,TL)技术建立电机故障诊断模型。对电机的各种工况进行分类和测试的结果表明:该方法能有效地对设备故障进行分类,对电机各种工况的识别平均准确率达100%。 展开更多
关键词 传感器融合 故障诊断 efficientnetv2-b0 迁移学习
在线阅读 下载PDF
闭式硼烷[B_(10)H_(10)]^(2-)的反应性及其衍生物的应用研究进展 被引量:10
2
作者 聂永 陈海艳 +2 位作者 苗金玲 孙国新 窦建民 《有机化学》 SCIE CAS CSCD 北大核心 2009年第6期822-834,共13页
多面体硼烷化合物以其独特的结构、成键和多方面的潜在应用价值而被广泛研究.综述了近20年来闭式(closo)硼烷[B10H10]2-的反应性(笼上氢取代、开笼-重排、开笼-金属插入等类型)及其衍生物的应用(硼中子俘获肿瘤治疗、放射性同位素萃取... 多面体硼烷化合物以其独特的结构、成键和多方面的潜在应用价值而被广泛研究.综述了近20年来闭式(closo)硼烷[B10H10]2-的反应性(笼上氢取代、开笼-重排、开笼-金属插入等类型)及其衍生物的应用(硼中子俘获肿瘤治疗、放射性同位素萃取分离、新型材料、超分子化学等方面)研究进展. 展开更多
关键词 硼烷 簇合物 闭式-b10H0^2- 反应性
在线阅读 下载PDF
高效液相色谱法测定颈康胶囊中二苯乙烯苷含量 被引量:2
3
作者 杨慈海 宋军 成森 《中国药业》 CAS 2013年第24期35-36,共2页
目的建立测定颈康胶囊中2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷含量的高效液相色谱法。方法色谱柱为Lichrom C18柱(250 mm×4.6 mm,5μm),流动相为乙腈-水(15∶85),流速为1 mL/min,检测波长为320 nm。结果2,3,5,4'-四... 目的建立测定颈康胶囊中2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷含量的高效液相色谱法。方法色谱柱为Lichrom C18柱(250 mm×4.6 mm,5μm),流动相为乙腈-水(15∶85),流速为1 mL/min,检测波长为320 nm。结果2,3,5,4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷进样量在0.027~0.432μg范围内呈良好的线性关系(r=0.999 9),平均回收率为98.86%,RSD=1.42%(n=6)。结论该法简便、准确,可用于颈康胶囊中何首乌的质量控制。 展开更多
关键词 高效液相色谱法 颈康胶囊 2 3 5 4’-四羟基二苯乙烯-2—0-b—D-葡萄糖苷 含量测定
暂未订购
MBTC-Net: Multimodal brain tumor classification from CT and MRI scans using deep neural network with multi-head attention mechanism
4
作者 Satrajit Kar Pawan Kumar Singh 《Medicine in Novel Technology and Devices》 2025年第3期130-148,共19页
Brain tumors pose a singularly formidable threat in contemporary healthcare due to their diverse histological profiles and unpredictable clinical behavior.Their spectrum ranges from slow-growing benign tumors to highl... Brain tumors pose a singularly formidable threat in contemporary healthcare due to their diverse histological profiles and unpredictable clinical behavior.Their spectrum ranges from slow-growing benign tumors to highly aggressive malignancies in sensitive anatomical locations.This necessitates an intensified focus on their path-ophysiology and demands precise characterization for patient-specific therapeutic solutions.Techniques to correctly identify brain tumors using artificial intelligence are often employed for addressing segmentation and detection tasks;however,the lack of generalizable results hinders medical practitioners from incorporating them into the diagnostic process.Predominantly reliant on Magnetic Resonance Imaging,research on other imaging methods like Positron Emission Tomography&Computed Tomography,is scarce due to a dearth of open-access datasets.Our study proposes a robust MBTC-Net framework by leveraging EfficientNetV2B0 for extracting high-dimensional feature maps,followed by reshaping into sequences and applying multi-head attention to capture contextual dependencies.After reintroducing the attention output into a spatial structure,we perform average pooling before transitioning to dense layers,enhanced with batch normalization and dropout.The model is fine-tuned with the Adamax optimizer to classify various kinds of brain tumors using softmax from T1-weighted,T1 Contrast-Enhanced,&T2-weighted MRI sequences and CT scans.To reduce the risk of overfitting,measures such as stratified 5-fold cross-validation have been extensively implemented across 3 open-access Kaggle datasets,obtaining 97.54%(15-class),97.97%(6-class),and 99.34%(2-class)accuracies,respectively.We have also applied Grad-CAM to decipher and visually analyze the predictions made by this framework.This research underscores the need for multimodal training of CT scans and MRI sequences for deploying a sturdy framework in real-time environments and advancing the well-being of patients. 展开更多
关键词 Multimodal brain tumor classification efficientnetv2b0 Multi-head attention Magnetic resonance imaging Computed tomography
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部