期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于轻量化的YOLOv5的PCB缺陷检测算法 被引量:3
1
作者 许皓翔 殳国华 《电气自动化》 2024年第2期95-97,102,共4页
针对在印刷电路板(printed circuit board,PCB)缺陷检测上网络模型过大且精度较低的缺点,使用Python在Windows上提出了一种基于YOLOv5l改进的PCB缺陷检测算法,并对六种常见的缺陷作为数据集进行检测。采用轻量化网络EfficientNetLite0... 针对在印刷电路板(printed circuit board,PCB)缺陷检测上网络模型过大且精度较低的缺点,使用Python在Windows上提出了一种基于YOLOv5l改进的PCB缺陷检测算法,并对六种常见的缺陷作为数据集进行检测。采用轻量化网络EfficientNetLite0作为模型的骨干网络﹐并通过对特征金字塔加入P2检测头来获取更小的目标特征。试验结果表明:所提算法对印刷电路板的缺陷有识别精度高、模型小和检测快速的特点;单张图片检测速度达到43.6 ms﹐模型大小为49.1 MB﹐所有类别精度指标达到98.9%。所提算法为未来部属在边缘设备上的工业缺陷检测提供了新思路。 展开更多
关键词 轻量化网络 边缘设备 PCB缺陷检测 efficientnetlite0 YOLOv5
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部