The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative...The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.展开更多
To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is ...To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.展开更多
A beam steering effect of high-power quantum cascade(QC) lasers emitting at 4.6 μm was investigated. The continuous wave(CW) output power of an uncoated, 6-mm-long, 7.5-μm-wide buried-heterostructure QC laser at 25...A beam steering effect of high-power quantum cascade(QC) lasers emitting at 4.6 μm was investigated. The continuous wave(CW) output power of an uncoated, 6-mm-long, 7.5-μm-wide buried-heterostructure QC laser at 25℃ was as high as 854.2 m W. The maximum beam steering angle was offset by ±14.2° from the facet normal(0°) in pulsed mode. The phenomenon was judged explicitly by combining the diffraction limit theory and Fourier transform of the spectra. It was also verified by finite element method software simulation and the calculation of two-dimensional(2 D)effective-index model. The observed steering is consistent with a theory for coherence between the two lowest order lateral modes. Therefore, we have established an intrinsic linkage between the spectral instabilities and the beam steering by using the Fourier transform of the spectra, and further presented an extremely valid method to judge the beam steering. The content of this method includes both three equidistant peak positions in the Fourier transform of the spectra and the beam quality located between once the diffraction limit(DL) and twice the DL.展开更多
文摘The group-velocity-dispersion properties of photonic crystal fiber (PCF) were investigated by effective-index model. The relationship between waveguide dispersion and structure parameters: the pitch A and the relative hole size/was studied.
基金Project(50735007) supported by the National Natural Science Foundation of ChinaProject(2010ZX04001-151) supported by Important National Science & Technology Specific Program of China
文摘To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.
基金Project supported by the National Basic Research Program of China(Grant Nos.2018YFA0209103 and 2018YFB2200504)the National Natural Science Foundation of China(Grant Nos.61991430,61774146,61790583,61674144,and 61774150)the Key Projects of the Chinese Academy of Sciences(Grant Nos.2018147,YJKYYQ20190002,QYZDJ-SSW-JSC027,and XDB43000000).
文摘A beam steering effect of high-power quantum cascade(QC) lasers emitting at 4.6 μm was investigated. The continuous wave(CW) output power of an uncoated, 6-mm-long, 7.5-μm-wide buried-heterostructure QC laser at 25℃ was as high as 854.2 m W. The maximum beam steering angle was offset by ±14.2° from the facet normal(0°) in pulsed mode. The phenomenon was judged explicitly by combining the diffraction limit theory and Fourier transform of the spectra. It was also verified by finite element method software simulation and the calculation of two-dimensional(2 D)effective-index model. The observed steering is consistent with a theory for coherence between the two lowest order lateral modes. Therefore, we have established an intrinsic linkage between the spectral instabilities and the beam steering by using the Fourier transform of the spectra, and further presented an extremely valid method to judge the beam steering. The content of this method includes both three equidistant peak positions in the Fourier transform of the spectra and the beam quality located between once the diffraction limit(DL) and twice the DL.