3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Choles...3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with thesolution of the equations for velocity increment by the conjugate gradient method is combined. Thistechnique, termed the shifted ICCG method, is then employed to solve the slab edging problem. Theperformance of this algorithm in terms of the number of iterations, friction variation, shiftedparameter psi and the results of simulation for processing parameters are analysed. Numerical testsand application of this technique verify the efficiency and stability of the shifted ICCG method inthe analysis of slab edging.展开更多
This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-a...This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-assisted junction termination extension(RA-JTE),multiple floating zone JTE(MFZ-JTE),and field limiting rings(FLR)were fabricated and irradiated with45 Me V protons at fluences ranging from 1×10^(12) to 1×10^(14) cm^(-2).Experimental results,supported by TCAD simulations,show that the RA-JTE structure maintained stable breakdown performance with less than 1%variation due to its effective electric field redistribution by multiple P+rings.In contrast,MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1%and 15.2%,respectively,under the highest fluence.These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened Si C power devices in space and other highradiation environments.展开更多
Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monit...Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monitoring and automate the communication process.In recent decades,researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations.However,the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity.These systems are vulnerable to a variety of cyberattacks,including unauthorized access,denial-of-service attacks,and data leakage,which compromise the network’s security.Additionally,uneven load balancing between mobile IoT devices,which frequently experience link interferences,compromises the trustworthiness of the system.This paper introduces a Multi-Agent secured framework using lightweight edge computing to enhance cybersecurity for sensor networks,aiming to leverage artificial intelligence for adaptive routing and multi-metric trust evaluation to achieve data privacy and mitigate potential threats.Moreover,it enhances the efficiency of distributed sensors for energy consumption through intelligent data analytics techniques,resulting in highly consistent and low-latency network communication.Using simulations,the proposed framework reveals its significant performance compared to state-of-the-art approaches for energy consumption by 43%,latency by 46%,network throughput by 51%,packet loss rate by 40%,and denial of service attacks by 42%.展开更多
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst...Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.展开更多
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays...As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network e...In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges be...The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.展开更多
Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution.In this work,an all-optical diffractive neural network(DPENet)based on the differential in...Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution.In this work,an all-optical diffractive neural network(DPENet)based on the differential interference contrast principle to detect the edges of phase objects in an all-optical manner is proposed.Edge information is encoded into an interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network to obtain the scale-adjustable edges.Simulation results show that DPENet achieves F-scores of 0.9308(MNIST)and 0.9352(NIST)and enables real-time edge detection of biological cells,achieving an F-score of 0.7462.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli...Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.展开更多
The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport ...The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport industry must innovate in key technologies to ensure high-quality transmissions for passengers and railway operations.These systems must function effectively under high mobility conditions while prioritizing safety,ecofriendliness,comfort,transparency,predictability,and reliability.On the other hand,the proposal of 6 G wireless technology introduces new possibilities for innovation in communication technologies,which may truly realize the current vision of HSR.Therefore,this article gives a review of the current advanced 6 G wireless communication technologies for HSR,including random access and switching,channel estimation and beamforming,integrated sensing and communication,and edge computing.The main application scenarios of these technologies are reviewed,as well as their current research status and challenges,followed by an outlook on future development directions.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their us...Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems.展开更多
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili...The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.展开更多
基金supported by Huo Yingdong Young Teachers Foundation,Ministry of State Education of ChinaNational Natural Science Foundation of China(No.59904003).
文摘3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with thesolution of the equations for velocity increment by the conjugate gradient method is combined. Thistechnique, termed the shifted ICCG method, is then employed to solve the slab edging problem. Theperformance of this algorithm in terms of the number of iterations, friction variation, shiftedparameter psi and the results of simulation for processing parameters are analysed. Numerical testsand application of this technique verify the efficiency and stability of the shifted ICCG method inthe analysis of slab edging.
基金supported by the IITP(Institute for Information&Communications Technology Planning&Evaluation)under the ITRC(Information Technology Research Center)support program(IITP-2025-RS-2024-00438288)grant funded by the Korea government(MSIT)+1 种基金National Research Council of Science&Technology(NST)grant by the MSIT(Aerospace Semiconductor Strategy Research Project No.GTL25051-000)supported by the IC Design Education Center(IDEC),Korea。
文摘This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-assisted junction termination extension(RA-JTE),multiple floating zone JTE(MFZ-JTE),and field limiting rings(FLR)were fabricated and irradiated with45 Me V protons at fluences ranging from 1×10^(12) to 1×10^(14) cm^(-2).Experimental results,supported by TCAD simulations,show that the RA-JTE structure maintained stable breakdown performance with less than 1%variation due to its effective electric field redistribution by multiple P+rings.In contrast,MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1%and 15.2%,respectively,under the highest fluence.These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened Si C power devices in space and other highradiation environments.
基金supported by the Deanship of Graduate Studies and Scientific Research at Jouf University.
文摘Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monitoring and automate the communication process.In recent decades,researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations.However,the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity.These systems are vulnerable to a variety of cyberattacks,including unauthorized access,denial-of-service attacks,and data leakage,which compromise the network’s security.Additionally,uneven load balancing between mobile IoT devices,which frequently experience link interferences,compromises the trustworthiness of the system.This paper introduces a Multi-Agent secured framework using lightweight edge computing to enhance cybersecurity for sensor networks,aiming to leverage artificial intelligence for adaptive routing and multi-metric trust evaluation to achieve data privacy and mitigate potential threats.Moreover,it enhances the efficiency of distributed sensors for energy consumption through intelligent data analytics techniques,resulting in highly consistent and low-latency network communication.Using simulations,the proposed framework reveals its significant performance compared to state-of-the-art approaches for energy consumption by 43%,latency by 46%,network throughput by 51%,packet loss rate by 40%,and denial of service attacks by 42%.
基金supported by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(C)23K03898.
文摘Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.
基金supported by Youth Talent Project of Scientific Research Program of Hubei Provincial Department of Education under Grant Q20241809Doctoral Scientific Research Foundation of Hubei University of Automotive Technology under Grant 202404.
文摘As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金supported by the National Natural Science Foundation of China(62202215)Liaoning Province Applied Basic Research Program(Youth Special Project,2023JH2/101600038)+4 种基金Shenyang Youth Science and Technology Innovation Talent Support Program(RC220458)Guangxuan Program of Shenyang Ligong University(SYLUGXRC202216)the Basic Research Special Funds for Undergraduate Universities in Liaoning Province(LJ212410144067)the Natural Science Foundation of Liaoning Province(2024-MS-113)the science and technology funds from Liaoning Education Department(LJKZ0242).
文摘In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB28000000 and XDB0460000)the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2021ZD0302600)the National Key Research and Development Program of China(Grant No.2024YFA1409002)。
文摘The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB2802000 and 2022YFB2804301)Shanghai Municipal Science and Technology Major Project,Science and Technology Commission of Shanghai Municipality(No.21DZ1100500)+2 种基金Shanghai Frontiers Science Center Program(2021-2025 No.20)National Natural Science Foundation of China(Nos.61975123 and 12072200)Science and Technology Development Foundation of Pudong New Area(No.PKX2021-D10)。
文摘Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution.In this work,an all-optical diffractive neural network(DPENet)based on the differential interference contrast principle to detect the edges of phase objects in an all-optical manner is proposed.Edge information is encoded into an interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network to obtain the scale-adjustable edges.Simulation results show that DPENet achieves F-scores of 0.9308(MNIST)and 0.9352(NIST)and enables real-time edge detection of biological cells,achieving an F-score of 0.7462.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金co-supported by the Science Center for Gas Turbine Project, China(No. P2022-AB-IV-001-002)the National Natural Science Foundation of China (No. 91960203)+1 种基金the Fundamental Research Funds for the Central Universities (No. D5000230048)the Innovation Capability Support Program of Shaanxi (No. 2022TD-60)
文摘Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.
基金National Natural Science Foundation of China(U2468201,62122012,62221001).
文摘The rapid expansion of railways,especially High-Speed Railways(HSRs),has drawn considerable interest from both academic and industrial sectors.To meet the future vision of smart rail communications,the rail transport industry must innovate in key technologies to ensure high-quality transmissions for passengers and railway operations.These systems must function effectively under high mobility conditions while prioritizing safety,ecofriendliness,comfort,transparency,predictability,and reliability.On the other hand,the proposal of 6 G wireless technology introduces new possibilities for innovation in communication technologies,which may truly realize the current vision of HSR.Therefore,this article gives a review of the current advanced 6 G wireless communication technologies for HSR,including random access and switching,channel estimation and beamforming,integrated sensing and communication,and edge computing.The main application scenarios of these technologies are reviewed,as well as their current research status and challenges,followed by an outlook on future development directions.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金financially supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation (NRF) grants (RS-2024-00462912, RS-2024-00416272, RS-2024-00337012, RS-2024-00408446) funded by the Ministry of Science and ICT (MSIT) of the Korean government+2 种基金the Korea Evaluation Institute of Industrial Technology (KEIT) grant (No. 1415185027/20019169, Alchemist project) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Korean governmentthe Soseon Science fellowship funded by Community Chest of Koreathe NRF PhD fellowship (RS-2023-00275565) funded by the Ministry of Education (MOE) of the Korean government。
文摘Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems.
文摘The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure.