This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power...This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.展开更多
The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are ...The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.展开更多
This article presents the design of an optimal coil structure for 2 de-tumbling devices, each is carried by a de-tumbling robot. The design is based on electromagnetic eddy current method and aims to reduce the angula...This article presents the design of an optimal coil structure for 2 de-tumbling devices, each is carried by a de-tumbling robot. The design is based on electromagnetic eddy current method and aims to reduce the angular velocity of uncooperative space targets. It proposes an optimization framework with the advantages of safety and high performance. The magnetic field analytical model is established by the designed coil’s structure parameters, and the optimal structure parameters of the coil are determined. To further ensure the maximum magnetic field at the target, the electromagnetic characteristics under different current directions in the 2 coils are analyzed based on magnetic field analytical model, and their accuracy is verified using finite element method (FEM). Additionally, an improved Maxwell’s stress tensor method is proposed to calculate the de-tumbling torque, and its accuracy is assessed using traditional Maxwell’s stress tensor and virtual displacement method. The proposed optimal coil structure and its optimization framework can de-tumble over 1 million targets of various sizes, demonstrating universality.展开更多
文摘This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.
基金Department of Science and Technology of Jiangsu Province,China(No. BE2003-46).
文摘The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
基金supported by the National Natural Science Foundation of China(11972078).
文摘This article presents the design of an optimal coil structure for 2 de-tumbling devices, each is carried by a de-tumbling robot. The design is based on electromagnetic eddy current method and aims to reduce the angular velocity of uncooperative space targets. It proposes an optimization framework with the advantages of safety and high performance. The magnetic field analytical model is established by the designed coil’s structure parameters, and the optimal structure parameters of the coil are determined. To further ensure the maximum magnetic field at the target, the electromagnetic characteristics under different current directions in the 2 coils are analyzed based on magnetic field analytical model, and their accuracy is verified using finite element method (FEM). Additionally, an improved Maxwell’s stress tensor method is proposed to calculate the de-tumbling torque, and its accuracy is assessed using traditional Maxwell’s stress tensor and virtual displacement method. The proposed optimal coil structure and its optimization framework can de-tumble over 1 million targets of various sizes, demonstrating universality.