The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to inv...The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact ...Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.展开更多
This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends kno...This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends knowledge-sharing platforms,soil protection laws,and collaborative efforts between regulatory agencies and agricultural experts.The study emphasizes the need for a balanced approach that includes natural methods alongside synthetic chemicals,particularly herbicides.Ten years ago,farmers primarily used urea,DAP,and potassium for nutrients.However,increased awareness,market forces,and government subsidies have led to a significant rise in herbicide use as a cost-effective weed management strategy.Over the past decade,synthetic fertilizer use for cotton cultivation has increased by 80%,leading to deteriorating soil quality.Paddy cultivation has decreased by 23%,while cotton cultivation has increased by 20.4%due to higher economic incentives.Currently,89.1%of farmers use herbicides,compared to 97.2%who did not a decade ago.Insecticide use has also surged,with 97.8%of farmers applying 1.5 liters or more per acre.The excessive use of chemicals threatens soil fertility and disrupts the ecosystem’s balance.This article explores the reasons behind the adoption of chemical-intensive farming practices and offers insights into farmers’decision-making processes.The careful use of synthetic chemicals is essential to safeguard soil health and maintain ecological balance.展开更多
River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by gen...River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by generations of water resources professionals.Rooted in river ecology,it offers a framework for advancing modern water governance systems and capabilities.This paper examines eight dimensions of river ethics to provide actionable recommendations:enhancing knowledge systems on water,rivers,and lakes;addressing critical challenges in water governance to strengthen the foundational role of water authorities in ensuring water security,resource management,ecological sustainability and environmental protection;optimizing water project planning to mitigate ecological impacts;ensuring high standards in the lifecycle management of water projects;refining water diversion strategies for precise scheduling;utilizing ecosystem complexity for river and lake restoration;implementing tiered management of water-related disasters;and driving reforms to modernize water governance systems and mechanisms.展开更多
The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ec...The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth.展开更多
The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,c...The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.展开更多
Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability ...Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.展开更多
The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate ...The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.展开更多
As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ra...As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ranges.Outbreaks of NIS can pose significant threats to local ecosystems and economies,making them a critical issue for marine biodiversity and biosecurity.Biological invasions in marine habitats differ significantly from those on land or in freshwater.Detection and identification of NIS in marine habitats is particularly challenging due to difficulties in sampling,morphological identification,and visualization in the early stages of outbreaks.Environmental DNA(eDNA)approaches have emerged as reliable and cost-effective methods for both qualitative and quantitative detection of marine NIS,particularly in the introductory phase.In this review,we summarize recent applications and advances in eDNA-based detection of marine NIS.We emphasize that innovations in eDNA sampling equipment,improvements in detection methods,and further refinement of the reference genomic database for marine species are crucial for the future development of this field.展开更多
Lhasa’s large-scale afforestation in high-altitude areas has worked wonders.THIS year’s March 21 marks the 13th International Day of Forests.Afforestation is an effective way to deal with climate change;it helps res...Lhasa’s large-scale afforestation in high-altitude areas has worked wonders.THIS year’s March 21 marks the 13th International Day of Forests.Afforestation is an effective way to deal with climate change;it helps restore the balance of the ecosystem while also providing support for the economic development of local communities.As the first ecological restoration project of large-scale mountain afforestation in Xizang Autonomous Region.展开更多
This study focuses on the assessment of ecosystem health(EH),ecosystem services(ES),and ecosystem risk(ER)in East Kolkata Wetland(EKW).A comprehensive framework on the EH,ES and ER has been developed using remote sesn...This study focuses on the assessment of ecosystem health(EH),ecosystem services(ES),and ecosystem risk(ER)in East Kolkata Wetland(EKW).A comprehensive framework on the EH,ES and ER has been developed using remote sesning and geo-spatial techniques for the year 2000,2005,2010,2015,and 2020.The study also assessed ecosystem structure and fragmentation using landscape metrics calculated using fragstats,which showed a significant influence of land use and land cover(LULC)changes on the wetland’s ecological integrity.The study revealed that 6.86% of EKW fallen under a very low EH zone,while 20% was categorized as having very high EH.Spatio-temporal analysis of ES indicated that 30%of the area had very low ES value,with only 8% exhibiting very high ES.ER assessment revealed that 7%of the study area was highly ER,while 12%identified within a high ER zone,reflecting frequent LULC changes.The correlation analysis highlighted strong negative relationships between landscape deviation degree(LDD)and EH(−0.971),and between normalized difference water index(NDWI)and normalized difference vegetation index(NDVI)(−0.991).Additionally,landscape metrics such as the number of patches(NP)and the largest patch index(LPI)exhibited significant correlations,emphasizing the impact of fragmentation on EH and resilience.This comprehensive assessment underscores the importance of integrated approaches to monitor and manage wetland ecosystems,particularly in urban areas facing significant environmental stressors.The findings are crucial for informed decision-making and sustainable management of the wetland ecosystems,particularly in the cities of the global south.展开更多
Seasonal variation in phytoplankton composition influences the pathways and efficiency of energy flow,reshaping the structure of the trophic pyramid in the Ross Sea.However,field investigation of grazing processes pre...Seasonal variation in phytoplankton composition influences the pathways and efficiency of energy flow,reshaping the structure of the trophic pyramid in the Ross Sea.However,field investigation of grazing processes presents challenges that hinder our understanding of energy pathways.This study aims to provide insights into energy flow using a three-dimensional ecosystem model applied to the Ross Sea.By analyzing the simulation results,the role of the seasonal phytoplankton succession,specifically the shift from dominance by Phaeocystis antarctica to diatoms,in energy allocation is explored.The short-lived spring bloom of P.antarctica mainly fuels microzooplankton,creating a brief food chain where energy transfers primarily among smaller plankton.In contrast,the subsequent summer bloom of diatoms,which persists longer,provides nearly half of the total phytoplankton energy loss(via ingestion and mortality)to larger mesozooplankton.Our findings indicate that phytoplankton succession in the Ross Sea extends the bloom duration,particularly for diatoms,thereby facilitating energy transfer to higher trophic levels and improving overall energy utilization.This suggests that phytoplankton succession,an ecological strategy adapted to iron-deficient environments in the Ross Sea,explains why the colder region in front of the Ross Ice Shelf is significantly more productive than the northern areas,ultimately favored by top predators.展开更多
Ecosystem service flows(ESFs)can reveal the interrelationships and impacts between natural systems and human activities.We can improve the stability and sustainability of ecosystems,more effectively utilize natural re...Ecosystem service flows(ESFs)can reveal the interrelationships and impacts between natural systems and human activities.We can improve the stability and sustainability of ecosystems,more effectively utilize natural resources,protect the environment,and enhance the harmonious coexistence of humans and nature by comprehending ESFs.However,few studies have examined ESFs across scales and evaluated their sustainability;most have concentrated on regional scales.In order to quantify and analyze ESFs within the Jing River Basin(JRB)and between the JRB and the adjacent and distant regions from a water-food-energy perspective,this paper employs a meta-coupling framework.Additionally,it evaluates the sustainability of these flows using a techno-ecological synergy framework.The results show that the ESFs within the JRB was significant in 2020.Water production services were concentrated in the southern part of the JRB,while the distribution of food supply and carbon supply services was relatively even.Huan County emerged as the largest exporting county,providing 1.46×10^(8)kg of food to other counties and exporting 2.97×10^(6)kg of energy.The ESFs in the JRB primarily moved towards the neighboring and distant systems.Water production services flowed into the Guanzhong Plain Urban Agglomeration(GPUA),amounting to 5.8×10^(6)kg.Carbon supply services flowed out at 2.4×10^(5)kg,and food exports were the highest,reaching 5.0×10^(7)kg.The ecosystem service flows from the JRB to both the neighboring and distant systems enhanced food security and ecological resilience.The basin itself demonstrated good sustainability in food supply services,with an index value reaching 48.19.In crossscale calculations of food production sustainability with the adjacent GPUA,the index value increased from 48.19 to 52.99,indicating a significant improvement.These findings demonstrate that applying the meta-coupling framework provides an effective approach to quantify ESFs and assess their sustainability across scales.展开更多
Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these ...Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.展开更多
For around fifty years,the regression and degradation of wetlands were considered so worrying that they were the subject of an international Convention signed on 2 February 1971,in Iran(RAMSAR).This treaty aims to con...For around fifty years,the regression and degradation of wetlands were considered so worrying that they were the subject of an international Convention signed on 2 February 1971,in Iran(RAMSAR).This treaty aims to conserve wetlands meeting criteria of international importance through the notion of rational use of these spaces and their biodiversity.The national and even international value of Lake Sidi Boughaba(Kenitra,Morocco)lies in its biodiversity which allowed its inclusion on the Ramsar list in 1980.This importance motivated us to begin an ecological assessment of the level of its pollution through spatiotemporal monitoring and analysis of physicochemical tracers from surface waters at seven sampling stations between January and December 2023.The waters of Lake Sidi Boughaba are relatively basic(pH=8.63),cold(15.14℃),very hard(64 meq/L),quite turbid(7.65 NTU),very salty(1935.85μs/cm)and well saturated with Calcium ions=312;Magnesium=605;Chlorides=5892;Sulfates=944;Silicates=26(mg/l).Other elements including nitrates(1.29 mg/l),ammonium(1.56 mg/l),fluorides(410μg/l),iron(350μg/l)and manganese(35μg/l)are low.This study concludes that Lake Sidi Boughaba is classified in the category of oligomesotrophic lakes and that it is too threatened by the progressive transformation of its fresh water into brackish water and consequently the change in its benthic and planktonic fauna necessary for food of avian fauna.The study further concludes that this wetland is under significant threat,and to protect its biodiversity,innovative approaches to hydrological development are necessary.展开更多
There is evidence of climate hormesis(low-dose stimulation and high-dose inhibition by climate change-related stressors),the adaptive response of cells and organisms to moderate,intermittent stress,at community and ec...There is evidence of climate hormesis(low-dose stimulation and high-dose inhibition by climate change-related stressors),the adaptive response of cells and organisms to moderate,intermittent stress,at community and ecosystem levels,including forest ecosystems with low levels of climate stressors.However,the role of climate hormesis in carbon sequestration by forests and its effects on global processes in the biosphere remains poorly understood.This paper examines this issue based on data for forests of various biomes.The analysis has shown that soil and vegetation are the main carbon pools in forests,which sequester carbon in humus and woody organic matter.Low dose climate stressors(i.e.,moderate stressors related to climate change),through hormetic stimulation of growth and photosynthesis,can increase forest productivity and carbon sequestration by ensuring long-term carbon conservation in wood.Climate hormesis can potentially enhance soil carbon stocks by increasing carbon runoff from vegetation.This may have a reverse stimulating effect on the productivity of trees by increasing available minerals,especially nitrogen.At the biosphere level,climate hormesis of forest ecosystems may be a mechanism of self-regulation,compensating for or at least restraining the pace of climate change,increasing the chances of biomes and ecosystems for successful adaptation.However,anthropogenic activities disrupt this mechanism and the buffer capacities of forests in the face of climate change,reducing their area,especially primary forests and their biological diversity.This review demonstrates the importance of hormesis for studying the effects of climate stressors on carbon sequestration by forests and may be used to enhance their buffering properties.展开更多
Coastal tourism holds substantial development potential.However,coastal ecosystems are affected by tourism development,which limits the supply of ecosystem services(ES).This study aims to conduct a systematic literatu...Coastal tourism holds substantial development potential.However,coastal ecosystems are affected by tourism development,which limits the supply of ecosystem services(ES).This study aims to conduct a systematic literature review on the impacts of tourism on coastal and marine ES using the Preferred Reporting Items for Systematic Reviews and Meta-alpha Methods.We initially identified 640 studies by searching titles,abstracts,and keywords.After screening,only 50 studies met the criteria for inclusion in the review.The results showed a significant increase in publications between 2011 and 2023.Most studies were conducted in Europe,Asia,and North and Central America.The most used ES classifications were MEA and CICES.Most studies concentrated on the ES supply dimension(43 studies;86%).Cultural ES(47 studies;94%)were researched more than provisioning(28 studies;56%)and regulating&maintenance(29 studies;58%)sections.Regarding cultural ES,most studies were focused on“Physical and experiential interactions with the natural environment”(34 studies;68%)and on provisioning ES on“Wild animals(terrestrial and aquatic)for nutrition,materials or energy”(18 studies;36%).Quantitative and mixed methods were the most used in the reviewed studies.Most studies identified pressures from“Tourism,urbanisation,and population increase”(27 studies;54%)and focused on“Integrative/common management strategies”(20 studies;40%).Only a few of the studies’results have been validated by external data(10 studies;20%).This study provides an overview of the most assessed marine and coastal ES,where studies are needed with more comprehensive geographic coverage.展开更多
Ecosystem services(ES)mapping and models have advanced in recent years.Improvements were made,and the assessments have transitioned from qualitative to quantitative.Although this is an important advancement,the ES map...Ecosystem services(ES)mapping and models have advanced in recent years.Improvements were made,and the assessments have transitioned from qualitative to quantitative.Although this is an important advancement,the ES mapping and modelling validation step has been overlooked,and this raises an important question in the credibility of the outcomes.This has been an important and unsolved issue in the ES research community that needs to be tackled.This highlight paper discusses the importance of validating single ES mapping and models.Conducting this using field or proximal/remote sensing raw data and not data from other models or stakeholder evaluation is important.A validation step should be mandatory in ES frameworks since it can assess the models’veracity,contribute to identifying the model’s weaknesses/strengths and ultimately represent a scientific advance in the field.This is easier to apply to the biophysical mapping and models of regulating and provisioning ES than to cultural ES,as the latter rely more on perception and cultural contexts.Also,ES supply models are easier to validate than demand and flow models.Robust and well-grounded models are essential for ensuring the reliability of individual ES maps and models and should be integrated into decision-making processes.Although several challenges arise related to the costs of data collection,in several cases prohibitive,and the time and the expertise needed to conduct this sampling and analysis,this is likely an imperative step that needs to be considered in the future.This will be beneficial in establishing ES research and improving decision-making and wellbeing.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.41931293)the National Natural Science Foundation of China(Grant No.42271275).
文摘The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
文摘Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.
文摘This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends knowledge-sharing platforms,soil protection laws,and collaborative efforts between regulatory agencies and agricultural experts.The study emphasizes the need for a balanced approach that includes natural methods alongside synthetic chemicals,particularly herbicides.Ten years ago,farmers primarily used urea,DAP,and potassium for nutrients.However,increased awareness,market forces,and government subsidies have led to a significant rise in herbicide use as a cost-effective weed management strategy.Over the past decade,synthetic fertilizer use for cotton cultivation has increased by 80%,leading to deteriorating soil quality.Paddy cultivation has decreased by 23%,while cotton cultivation has increased by 20.4%due to higher economic incentives.Currently,89.1%of farmers use herbicides,compared to 97.2%who did not a decade ago.Insecticide use has also surged,with 97.8%of farmers applying 1.5 liters or more per acre.The excessive use of chemicals threatens soil fertility and disrupts the ecosystem’s balance.This article explores the reasons behind the adoption of chemical-intensive farming practices and offers insights into farmers’decision-making processes.The careful use of synthetic chemicals is essential to safeguard soil health and maintain ecological balance.
基金Three Gorges Follow-up Work Fund,Grant/Award Number:WE0161A042024National Key Research Program of China,Grant/Award Number:2024YFC3210900。
文摘River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by generations of water resources professionals.Rooted in river ecology,it offers a framework for advancing modern water governance systems and capabilities.This paper examines eight dimensions of river ethics to provide actionable recommendations:enhancing knowledge systems on water,rivers,and lakes;addressing critical challenges in water governance to strengthen the foundational role of water authorities in ensuring water security,resource management,ecological sustainability and environmental protection;optimizing water project planning to mitigate ecological impacts;ensuring high standards in the lifecycle management of water projects;refining water diversion strategies for precise scheduling;utilizing ecosystem complexity for river and lake restoration;implementing tiered management of water-related disasters;and driving reforms to modernize water governance systems and mechanisms.
基金funded by the Central University D Project(HFW230600022)National Natural Science Foundation of China(71973021)+1 种基金National Natural Science Foundation Youth Funding Project(72003022)Heilongjiang Province University Think Tank Open Topic(ZKKF2022173).
文摘The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth.
基金funded by the National Natural Science Foundation of China(52079103)the Outstanding Youth Science Fund of Xi'an University of Science and Technology(2024YQ2-02).
文摘The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.
基金jointly supported by the National Natural Science Foundation of China [grant number 42265012]the Funding by the Fengyun Application Pioneering Project [grant number FY-APP-ZX-2022.0221]。
文摘Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.42425107)Ecological Civilization Special Project of Key Research&and Development Program in Gansu Province(No.24YFFA009)the Top Talent Project of Gansu Province,Chinese Academy of Sciences Young Crossover Team Project(No.JCTD-2022-18)。
文摘The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.
文摘As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ranges.Outbreaks of NIS can pose significant threats to local ecosystems and economies,making them a critical issue for marine biodiversity and biosecurity.Biological invasions in marine habitats differ significantly from those on land or in freshwater.Detection and identification of NIS in marine habitats is particularly challenging due to difficulties in sampling,morphological identification,and visualization in the early stages of outbreaks.Environmental DNA(eDNA)approaches have emerged as reliable and cost-effective methods for both qualitative and quantitative detection of marine NIS,particularly in the introductory phase.In this review,we summarize recent applications and advances in eDNA-based detection of marine NIS.We emphasize that innovations in eDNA sampling equipment,improvements in detection methods,and further refinement of the reference genomic database for marine species are crucial for the future development of this field.
文摘Lhasa’s large-scale afforestation in high-altitude areas has worked wonders.THIS year’s March 21 marks the 13th International Day of Forests.Afforestation is an effective way to deal with climate change;it helps restore the balance of the ecosystem while also providing support for the economic development of local communities.As the first ecological restoration project of large-scale mountain afforestation in Xizang Autonomous Region.
文摘This study focuses on the assessment of ecosystem health(EH),ecosystem services(ES),and ecosystem risk(ER)in East Kolkata Wetland(EKW).A comprehensive framework on the EH,ES and ER has been developed using remote sesning and geo-spatial techniques for the year 2000,2005,2010,2015,and 2020.The study also assessed ecosystem structure and fragmentation using landscape metrics calculated using fragstats,which showed a significant influence of land use and land cover(LULC)changes on the wetland’s ecological integrity.The study revealed that 6.86% of EKW fallen under a very low EH zone,while 20% was categorized as having very high EH.Spatio-temporal analysis of ES indicated that 30%of the area had very low ES value,with only 8% exhibiting very high ES.ER assessment revealed that 7%of the study area was highly ER,while 12%identified within a high ER zone,reflecting frequent LULC changes.The correlation analysis highlighted strong negative relationships between landscape deviation degree(LDD)and EH(−0.971),and between normalized difference water index(NDWI)and normalized difference vegetation index(NDVI)(−0.991).Additionally,landscape metrics such as the number of patches(NP)and the largest patch index(LPI)exhibited significant correlations,emphasizing the impact of fragmentation on EH and resilience.This comprehensive assessment underscores the importance of integrated approaches to monitor and manage wetland ecosystems,particularly in urban areas facing significant environmental stressors.The findings are crucial for informed decision-making and sustainable management of the wetland ecosystems,particularly in the cities of the global south.
基金The National Natural Science Foundation of China under contract No.41941008the National Key Research and Development Program of China under contract No.2023YFC3107702.
文摘Seasonal variation in phytoplankton composition influences the pathways and efficiency of energy flow,reshaping the structure of the trophic pyramid in the Ross Sea.However,field investigation of grazing processes presents challenges that hinder our understanding of energy pathways.This study aims to provide insights into energy flow using a three-dimensional ecosystem model applied to the Ross Sea.By analyzing the simulation results,the role of the seasonal phytoplankton succession,specifically the shift from dominance by Phaeocystis antarctica to diatoms,in energy allocation is explored.The short-lived spring bloom of P.antarctica mainly fuels microzooplankton,creating a brief food chain where energy transfers primarily among smaller plankton.In contrast,the subsequent summer bloom of diatoms,which persists longer,provides nearly half of the total phytoplankton energy loss(via ingestion and mortality)to larger mesozooplankton.Our findings indicate that phytoplankton succession in the Ross Sea extends the bloom duration,particularly for diatoms,thereby facilitating energy transfer to higher trophic levels and improving overall energy utilization.This suggests that phytoplankton succession,an ecological strategy adapted to iron-deficient environments in the Ross Sea,explains why the colder region in front of the Ross Ice Shelf is significantly more productive than the northern areas,ultimately favored by top predators.
基金supported by the National Natural Science Foundation of China[Grant NO.42361040]。
文摘Ecosystem service flows(ESFs)can reveal the interrelationships and impacts between natural systems and human activities.We can improve the stability and sustainability of ecosystems,more effectively utilize natural resources,protect the environment,and enhance the harmonious coexistence of humans and nature by comprehending ESFs.However,few studies have examined ESFs across scales and evaluated their sustainability;most have concentrated on regional scales.In order to quantify and analyze ESFs within the Jing River Basin(JRB)and between the JRB and the adjacent and distant regions from a water-food-energy perspective,this paper employs a meta-coupling framework.Additionally,it evaluates the sustainability of these flows using a techno-ecological synergy framework.The results show that the ESFs within the JRB was significant in 2020.Water production services were concentrated in the southern part of the JRB,while the distribution of food supply and carbon supply services was relatively even.Huan County emerged as the largest exporting county,providing 1.46×10^(8)kg of food to other counties and exporting 2.97×10^(6)kg of energy.The ESFs in the JRB primarily moved towards the neighboring and distant systems.Water production services flowed into the Guanzhong Plain Urban Agglomeration(GPUA),amounting to 5.8×10^(6)kg.Carbon supply services flowed out at 2.4×10^(5)kg,and food exports were the highest,reaching 5.0×10^(7)kg.The ecosystem service flows from the JRB to both the neighboring and distant systems enhanced food security and ecological resilience.The basin itself demonstrated good sustainability in food supply services,with an index value reaching 48.19.In crossscale calculations of food production sustainability with the adjacent GPUA,the index value increased from 48.19 to 52.99,indicating a significant improvement.These findings demonstrate that applying the meta-coupling framework provides an effective approach to quantify ESFs and assess their sustainability across scales.
基金supported by the Forest Research Centre,a research unit funded by Fundacao para a Ciencia e a Tecnologia I.P.(FCT),Portugal(UIDB/00239/2020)the Associated Laboratory TERRA(LA/P/0092/2020)+4 种基金Additional funding was provided through the Ph.D.grant awarded to Dagm Abate(UI/BD/151525/2021)by two key projects:H2020-MSCA-RISE-2020/101007950,titled“DecisionES-Decision Support for the Supply of Ecosystem Services under Global Change,”funded by the Marie Curie International Staff Exchange Scheme,H2020-LCGD-2020-3/101037419,titled“FIRE-RES-Innovative technologies and socio-ecological economic solutions for fireresilient territories in Europe,”funded by the EU Horizon 2020—Research and Innovation Framework Programmesupported by a project MODFIRE—a multiple criteria approach to integrate wildfire behavior in forest management planning with reference PCIF/MOS/0217/2017a contract from Dr.Susete Marques in the scope of Norma Transitoria—DL57/2016/CP1382/CT15a grant from Fundacao para a Ciencia e a Tecnologia(FCT),Portugal to Dr.Guerra-Hernandez(CEECIND/02576/2022).
文摘Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.
文摘For around fifty years,the regression and degradation of wetlands were considered so worrying that they were the subject of an international Convention signed on 2 February 1971,in Iran(RAMSAR).This treaty aims to conserve wetlands meeting criteria of international importance through the notion of rational use of these spaces and their biodiversity.The national and even international value of Lake Sidi Boughaba(Kenitra,Morocco)lies in its biodiversity which allowed its inclusion on the Ramsar list in 1980.This importance motivated us to begin an ecological assessment of the level of its pollution through spatiotemporal monitoring and analysis of physicochemical tracers from surface waters at seven sampling stations between January and December 2023.The waters of Lake Sidi Boughaba are relatively basic(pH=8.63),cold(15.14℃),very hard(64 meq/L),quite turbid(7.65 NTU),very salty(1935.85μs/cm)and well saturated with Calcium ions=312;Magnesium=605;Chlorides=5892;Sulfates=944;Silicates=26(mg/l).Other elements including nitrates(1.29 mg/l),ammonium(1.56 mg/l),fluorides(410μg/l),iron(350μg/l)and manganese(35μg/l)are low.This study concludes that Lake Sidi Boughaba is classified in the category of oligomesotrophic lakes and that it is too threatened by the progressive transformation of its fresh water into brackish water and consequently the change in its benthic and planktonic fauna necessary for food of avian fauna.The study further concludes that this wetland is under significant threat,and to protect its biodiversity,innovative approaches to hydrological development are necessary.
文摘There is evidence of climate hormesis(low-dose stimulation and high-dose inhibition by climate change-related stressors),the adaptive response of cells and organisms to moderate,intermittent stress,at community and ecosystem levels,including forest ecosystems with low levels of climate stressors.However,the role of climate hormesis in carbon sequestration by forests and its effects on global processes in the biosphere remains poorly understood.This paper examines this issue based on data for forests of various biomes.The analysis has shown that soil and vegetation are the main carbon pools in forests,which sequester carbon in humus and woody organic matter.Low dose climate stressors(i.e.,moderate stressors related to climate change),through hormetic stimulation of growth and photosynthesis,can increase forest productivity and carbon sequestration by ensuring long-term carbon conservation in wood.Climate hormesis can potentially enhance soil carbon stocks by increasing carbon runoff from vegetation.This may have a reverse stimulating effect on the productivity of trees by increasing available minerals,especially nitrogen.At the biosphere level,climate hormesis of forest ecosystems may be a mechanism of self-regulation,compensating for or at least restraining the pace of climate change,increasing the chances of biomes and ecosystems for successful adaptation.However,anthropogenic activities disrupt this mechanism and the buffer capacities of forests in the face of climate change,reducing their area,especially primary forests and their biological diversity.This review demonstrates the importance of hormesis for studying the effects of climate stressors on carbon sequestration by forests and may be used to enhance their buffering properties.
基金supported by the project MApping and Forecasting Ecosystem Services in Urban Areas(MAFESUR)funded by the Lithuanian Research Council(Contract:Nr.P-MIP-23-426).
文摘Coastal tourism holds substantial development potential.However,coastal ecosystems are affected by tourism development,which limits the supply of ecosystem services(ES).This study aims to conduct a systematic literature review on the impacts of tourism on coastal and marine ES using the Preferred Reporting Items for Systematic Reviews and Meta-alpha Methods.We initially identified 640 studies by searching titles,abstracts,and keywords.After screening,only 50 studies met the criteria for inclusion in the review.The results showed a significant increase in publications between 2011 and 2023.Most studies were conducted in Europe,Asia,and North and Central America.The most used ES classifications were MEA and CICES.Most studies concentrated on the ES supply dimension(43 studies;86%).Cultural ES(47 studies;94%)were researched more than provisioning(28 studies;56%)and regulating&maintenance(29 studies;58%)sections.Regarding cultural ES,most studies were focused on“Physical and experiential interactions with the natural environment”(34 studies;68%)and on provisioning ES on“Wild animals(terrestrial and aquatic)for nutrition,materials or energy”(18 studies;36%).Quantitative and mixed methods were the most used in the reviewed studies.Most studies identified pressures from“Tourism,urbanisation,and population increase”(27 studies;54%)and focused on“Integrative/common management strategies”(20 studies;40%).Only a few of the studies’results have been validated by external data(10 studies;20%).This study provides an overview of the most assessed marine and coastal ES,where studies are needed with more comprehensive geographic coverage.
基金supported by the project Monetary valuation of soil ecosystem services and creation of initiatives to invest in soil health:setting a framework for the inclusion of soil health in business and in the policy making process(InBestSoil)(Horizon Europe)Grant agreement ID:101091099。
文摘Ecosystem services(ES)mapping and models have advanced in recent years.Improvements were made,and the assessments have transitioned from qualitative to quantitative.Although this is an important advancement,the ES mapping and modelling validation step has been overlooked,and this raises an important question in the credibility of the outcomes.This has been an important and unsolved issue in the ES research community that needs to be tackled.This highlight paper discusses the importance of validating single ES mapping and models.Conducting this using field or proximal/remote sensing raw data and not data from other models or stakeholder evaluation is important.A validation step should be mandatory in ES frameworks since it can assess the models’veracity,contribute to identifying the model’s weaknesses/strengths and ultimately represent a scientific advance in the field.This is easier to apply to the biophysical mapping and models of regulating and provisioning ES than to cultural ES,as the latter rely more on perception and cultural contexts.Also,ES supply models are easier to validate than demand and flow models.Robust and well-grounded models are essential for ensuring the reliability of individual ES maps and models and should be integrated into decision-making processes.Although several challenges arise related to the costs of data collection,in several cases prohibitive,and the time and the expertise needed to conduct this sampling and analysis,this is likely an imperative step that needs to be considered in the future.This will be beneficial in establishing ES research and improving decision-making and wellbeing.