Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradat...Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.展开更多
Floodplain wetlands are invaluable ecosystems providing numerous ecological benefits,yet they face a global crisis necessitating sustainable preservation efforts.This study examines the depletion of floodplain wetland...Floodplain wetlands are invaluable ecosystems providing numerous ecological benefits,yet they face a global crisis necessitating sustainable preservation efforts.This study examines the depletion of floodplain wetlands within the Hastinapur Wildlife Sanctuary(HWLS)in Uttar Pradesh.Encroachment activities such as grazing,agriculture,and human settlements have fragmented and degraded critical wetland ecosystems.Additionally,irrigation projects,dam construction,and water diversion have disrupted natural water flow and availability.To assess wetland inundation in 2023,five classification techniques were employed:Random Forest(RF),Support Vector Machine(SVM),artificial neural network(ANN),Spectral Information Divergence(SID),and Maximum Likelihood Classifier(MLC).SVM emerged as the most precise method,as determined by kappa coefficient and index-based validation.Consequently,the SVM classifier was used to model wetland inundation areas from 1983 to 2023 and analyze spatiotemporal changes and fragmentation patterns.The findings revealed that the SVM clas-sifier accurately mapped 2023 wetland areas.The modeled time-series data demonstrated a 62.55%and 38.12%reduction in inundated wetland areas over the past 40 years in the pre-and post-monsoon periods,respectively.Fragmentation analysis indicated an 86.27%decrease in large core wetland areas in the pre-monsoon period,signifying severe habitat degradation.This rapid decline in wetlands within protected areas raises concerns about their ecological impacts.By linking wetland loss to global sustainability objectives,this study underscores the global urgency for strengthened wetland protection measures and highlights the need for integrating wetland conservation into broader sustainable development goals.Effective policies and adaptive management strategies are crucial for preserving these ecosystems and their vital services,which are essential for biodiversity,climate regulation,and human well-being.展开更多
Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,th...Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,this study proposes a Climate-Induced Productivity Index(CIPI)based on the Super Slack-Based Measure(Super-SBM)model using remote sensing data from 2001 to 2020.The results reveal persistently low CIPI values(0.47-0.53)across major ecosystem types,indicating widespread vulnerability to climatic variability.Among these ecosystems,forests exhibit the highest CIPI(0.55),followed by shrublands(0.54),croplands(0.53),grasslands(0.51),and barelands(0.43).The Theil index analysis further demonstrates significant intra-group disparities,suggesting that extreme climatic events amplify CIPI heterogeneity.Moreover,the dominant environmental drivers differ among ecosystem types:the Palmer Drought Severity Index(PDSI)primarily constrains grassland productivity,solar radiation(SRAD)strongly influences shrub and cropland systems,whereas subsurface factors exert greater control in forested regions.This study provides a quantitative framework for evaluating climate-ecosystem interactions and offers a scientific basis for long-term ecological monitoring and security planning across the EQTP.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to inv...The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.展开更多
Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact ...Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.展开更多
This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends kno...This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends knowledge-sharing platforms,soil protection laws,and collaborative efforts between regulatory agencies and agricultural experts.The study emphasizes the need for a balanced approach that includes natural methods alongside synthetic chemicals,particularly herbicides.Ten years ago,farmers primarily used urea,DAP,and potassium for nutrients.However,increased awareness,market forces,and government subsidies have led to a significant rise in herbicide use as a cost-effective weed management strategy.Over the past decade,synthetic fertilizer use for cotton cultivation has increased by 80%,leading to deteriorating soil quality.Paddy cultivation has decreased by 23%,while cotton cultivation has increased by 20.4%due to higher economic incentives.Currently,89.1%of farmers use herbicides,compared to 97.2%who did not a decade ago.Insecticide use has also surged,with 97.8%of farmers applying 1.5 liters or more per acre.The excessive use of chemicals threatens soil fertility and disrupts the ecosystem’s balance.This article explores the reasons behind the adoption of chemical-intensive farming practices and offers insights into farmers’decision-making processes.The careful use of synthetic chemicals is essential to safeguard soil health and maintain ecological balance.展开更多
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake...Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake Baikal,and the Angara River,the only runoff reflecting all this aquatic diversity.River waters in the Baikal region are known to be deficient in some vital elements,including fluorine.This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem.Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method.The study represents the monitoring that was carried out between 1997 and 2022 years.We determine likely causes of high and low fluorine concentrations in the water from different components,propose and substantiate the fluorine sources,geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.展开更多
Aboveground biomass(AGB)and belowground biomass(BGB)are key components of carbon storage,yet their responses to future climate changes remain poorly understood,particularly in China.Understanding these dynamics is ess...Aboveground biomass(AGB)and belowground biomass(BGB)are key components of carbon storage,yet their responses to future climate changes remain poorly understood,particularly in China.Understanding these dynamics is essential for global carbon cycle modeling and ecosystem management.This study integrates field observations,machine learning,and multi-source remote sensing data to reconstruct the distributions of AGB and BGB in China from 2000 to 2020.Then CMIP6 was used to predict the distribution of China under three SSP scenarios(SSP1-1.9,SSP2-4.5,SSP5-8.5)from 2020 to 2100 to fill the existing knowledge gap.The predictive accuracy for AGB(R^(2)=0.85)was significantly higher than for BGB(R^(2)=0.48),likely due to the greater complexity of modeling belowground dynamics.NDVI(Normalized Difference Vegetation Index)and soil organic carbon density(SOC)were identified as the primary drivers of AGB and BGB changes.During 2000-2020,AGB in China remained stable at approximately 10.69 Pg C,while BGB was around 5.06 Pg C.Forest ecosystems contributed 88.52% of AGB and 43.83% of BGB.AGB showed a relatively slow annual increase,while BGB demonstrated a significant annual growth rate of approximately 37 Tg C yr^(−1).Under the low-emission scenario,both AGB and BGB show fluctuations and steady growth,particularly in South China and the northwestern part of Northeast China.Under the moderate-emission scenario,AGB and BGB show significant declines and increases,respectively.In the high-emission scenario,both AGB and BGB decline significantly,particularly in the southwestern and central regions.These results provide valuable insights into ecosystem carbon dynamics under climate change,emphasizing the relatively low responsiveness of AGB and BGB to climatic variability,and offering guidance for sustainable land use and management strategies.展开更多
Population shrinkage of alpine cushion plants with ongoing climate warming has been empirically confirmed.Since cushion plants play important roles in sustaining alpine plant community and ecosystem functions,their po...Population shrinkage of alpine cushion plants with ongoing climate warming has been empirically confirmed.Since cushion plants play important roles in sustaining alpine plant community and ecosystem functions,their population dynamics may directly influence the future alpine ecosystems.However,little is known about how climate warming affect cushion population recruitment,especially at early life-history stages.In this study,we conducted a laboratory simulation of climate warming to detect the effects of warming temperature and associated moisture and light changes on seed germination and seedling growth of the typical alpine cushion plant Arenaria oreophila.Results suggested that increasing temperature indeed exerted strong constraints on the population recruitment processes.Specifically,increased temperatures could quickly initialize seed germination(4e6 days at higher temperatures vs.29 e32 days at low temperature,respectively,after sowing),accelerate them to reach the maximum germination percentage(9e19 days at higher temperatures vs.57e86 days at low temperature,respectively,after sowing)and significantly accelerate seedling growth rate.However,higher temperatures accelerated seedling mortality(more than 80%).In addition,lower light availability also increased seedling mortality though it could generally increase the final seed germination percentage.The effects of water might be dependent on temperature and light.All results suggested that cushion A.oreophila is quite sensitive to climate warming which strongly constrains its seedling establishment process.We,therefore,speculate that the continuing climate warming in future will exert uncertain risks in the persistence of cushion A.oreophila,possibly by constraining the process of seedling recruitments.展开更多
The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter ref...The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter referred as Gannan Prefecture),located on the northeastern edge of the QXP,represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services(ESs).This study established a comprehensive framework,utilizing the Patch-generating Land-Use Simulation(PLUS)model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to predict land use patterns under the natural development scenario,cultivated land protection scenario,and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs:habitat quality(HQ),water yield(WY),soil retention(SR),and carbon storage(CS).The primary aim is to elucidate the impacts of dynamic land use change on ESs.The results revealed that,from 2000 to 2020,HQ exhibited minimal variation,whereas CS experienced a slight decline.Conversely,WY and SR showed significant improvements.Under the natural development scenario,construction land was projected to increase by 4247.74 hm^(2),primarily at the expense of forest land.The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm^(2),which was crucial for maintaining food security.The ecological protection scenario predicted a notable expansion of forest land,accompanied by a restrained development rate of construction land.The ecological protection scenario also showed an increase in the ecosystem service index(ESI),encompassing 26.07%of the region.Forest land and grassland emerged as the primary contributors to ESs,while construction land substantially impacted WY.Water bodies exhibited minimal contribution to ESs.This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems,offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.展开更多
Quantifying and mapping how ecosystem services impact agricultural competitiveness is crucial for attaining the Sustainable Development Goals of United Nations.However,few study quantified agricultural competitiveness...Quantifying and mapping how ecosystem services impact agricultural competitiveness is crucial for attaining the Sustainable Development Goals of United Nations.However,few study quantified agricultural competitiveness and mapped the effects of ecosystem services on agricultural competitiveness using multiple models.In this study,multi-source data from 2000 to 2020 were utilized to establish the indicator system of agricultural competitiveness;five ecosystem services were quantified using computation models;Geographic Information System(GIS)spatial analysis was used to explore the spatial patterns of agricultural competitiveness and ecosystem services;geographic detector models were applied to investigate the effects and driving mechanisms of ecosystem services on agricultural competitiveness.Shandong Province of China was selected as the case study area.The results demonstrated that:1)there was a significant increase in agricultural competitiveness during the study period,with high levels observed mainly in the east region of the study area.2)The spatial distribution patterns of ecosystem services and agricultural competitiveness primarily exhibited High-High and Low-Low Cluster types.3)Habitat quality emerged as the main driving factor of agricultural competitiveness in 2000 and 2020,while water yield played a substantial role in 2010.4)The coupling of two ecosystem services exerted a greater effect on agricultural competitiveness compared to individual ecosystem service.The innovations of this study are constructing an indicator system to quantify agricultural competitiveness,and exploring the effects of ecosystem services on agricultural competitiveness.This study proposed an indicator system to quantify agricultural competitiveness,which can be applied in other regions,and explored the effects of ecosystem services on agricultural competitiveness.The findings of this study can serve as valuable insights for policymakers to formulate tailored agricultural development policies that take into account the synergistic effects of ecosystem services on agricultural competitiveness.展开更多
As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of ...As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.展开更多
River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by gen...River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by generations of water resources professionals.Rooted in river ecology,it offers a framework for advancing modern water governance systems and capabilities.This paper examines eight dimensions of river ethics to provide actionable recommendations:enhancing knowledge systems on water,rivers,and lakes;addressing critical challenges in water governance to strengthen the foundational role of water authorities in ensuring water security,resource management,ecological sustainability and environmental protection;optimizing water project planning to mitigate ecological impacts;ensuring high standards in the lifecycle management of water projects;refining water diversion strategies for precise scheduling;utilizing ecosystem complexity for river and lake restoration;implementing tiered management of water-related disasters;and driving reforms to modernize water governance systems and mechanisms.展开更多
The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ec...The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth.展开更多
The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,c...The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.展开更多
Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability ...Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.展开更多
The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate ...The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.展开更多
基金supported by the National Key Research and Development Program of China(2025YFE0103800,2023YFE0102600,2024YFE0214200).
文摘Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.
基金support through the“Trans-Disciplinary Research”Grant(No.R/Dev/IoE/TDRProjects/2023-24/61658),which played a crucial role in enabling this research endeavor.
文摘Floodplain wetlands are invaluable ecosystems providing numerous ecological benefits,yet they face a global crisis necessitating sustainable preservation efforts.This study examines the depletion of floodplain wetlands within the Hastinapur Wildlife Sanctuary(HWLS)in Uttar Pradesh.Encroachment activities such as grazing,agriculture,and human settlements have fragmented and degraded critical wetland ecosystems.Additionally,irrigation projects,dam construction,and water diversion have disrupted natural water flow and availability.To assess wetland inundation in 2023,five classification techniques were employed:Random Forest(RF),Support Vector Machine(SVM),artificial neural network(ANN),Spectral Information Divergence(SID),and Maximum Likelihood Classifier(MLC).SVM emerged as the most precise method,as determined by kappa coefficient and index-based validation.Consequently,the SVM classifier was used to model wetland inundation areas from 1983 to 2023 and analyze spatiotemporal changes and fragmentation patterns.The findings revealed that the SVM clas-sifier accurately mapped 2023 wetland areas.The modeled time-series data demonstrated a 62.55%and 38.12%reduction in inundated wetland areas over the past 40 years in the pre-and post-monsoon periods,respectively.Fragmentation analysis indicated an 86.27%decrease in large core wetland areas in the pre-monsoon period,signifying severe habitat degradation.This rapid decline in wetlands within protected areas raises concerns about their ecological impacts.By linking wetland loss to global sustainability objectives,this study underscores the global urgency for strengthened wetland protection measures and highlights the need for integrating wetland conservation into broader sustainable development goals.Effective policies and adaptive management strategies are crucial for preserving these ecosystems and their vital services,which are essential for biodiversity,climate regulation,and human well-being.
基金National Key R&D Program of China,No.2022YFF1302401National Natural Science Foundation of China,No.42271007。
文摘Ecosystems along the eastern margin of the Qinghai-Tibet Plateau(EQTP)are highly fragile and extremely sensitive to climate change and human disturbances.To quantitatively assess climate-induced ecosystem responses,this study proposes a Climate-Induced Productivity Index(CIPI)based on the Super Slack-Based Measure(Super-SBM)model using remote sensing data from 2001 to 2020.The results reveal persistently low CIPI values(0.47-0.53)across major ecosystem types,indicating widespread vulnerability to climatic variability.Among these ecosystems,forests exhibit the highest CIPI(0.55),followed by shrublands(0.54),croplands(0.53),grasslands(0.51),and barelands(0.43).The Theil index analysis further demonstrates significant intra-group disparities,suggesting that extreme climatic events amplify CIPI heterogeneity.Moreover,the dominant environmental drivers differ among ecosystem types:the Palmer Drought Severity Index(PDSI)primarily constrains grassland productivity,solar radiation(SRAD)strongly influences shrub and cropland systems,whereas subsurface factors exert greater control in forested regions.This study provides a quantitative framework for evaluating climate-ecosystem interactions and offers a scientific basis for long-term ecological monitoring and security planning across the EQTP.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.41931293)the National Natural Science Foundation of China(Grant No.42271275).
文摘The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.
文摘Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.
文摘This study examines the evolving use of synthetic chemicals in intensive agriculture over the past decade.It highlights the negative impacts of chemical inputs on soil health and ecosystem integrity and recommends knowledge-sharing platforms,soil protection laws,and collaborative efforts between regulatory agencies and agricultural experts.The study emphasizes the need for a balanced approach that includes natural methods alongside synthetic chemicals,particularly herbicides.Ten years ago,farmers primarily used urea,DAP,and potassium for nutrients.However,increased awareness,market forces,and government subsidies have led to a significant rise in herbicide use as a cost-effective weed management strategy.Over the past decade,synthetic fertilizer use for cotton cultivation has increased by 80%,leading to deteriorating soil quality.Paddy cultivation has decreased by 23%,while cotton cultivation has increased by 20.4%due to higher economic incentives.Currently,89.1%of farmers use herbicides,compared to 97.2%who did not a decade ago.Insecticide use has also surged,with 97.8%of farmers applying 1.5 liters or more per acre.The excessive use of chemicals threatens soil fertility and disrupts the ecosystem’s balance.This article explores the reasons behind the adoption of chemical-intensive farming practices and offers insights into farmers’decision-making processes.The careful use of synthetic chemicals is essential to safeguard soil health and maintain ecological balance.
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
基金the framework of the IGC SB RAS project(No.0284-2021-0003)supported by the RFFR ofi_m project(No.17-29-05022).
文摘Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake Baikal,and the Angara River,the only runoff reflecting all this aquatic diversity.River waters in the Baikal region are known to be deficient in some vital elements,including fluorine.This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem.Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method.The study represents the monitoring that was carried out between 1997 and 2022 years.We determine likely causes of high and low fluorine concentrations in the water from different components,propose and substantiate the fluorine sources,geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.
基金supported by the Tianchi Talent-Young Doctor Program of the Xinjiang Uygur Autonomous Region,the Innovation Training Program for Undergraduates at the Autonomous Region Level in 2024(Grant No.S202410755009)the Innovation Training Program for Undergraduates at the University Level in 2024(Grant No.XJU-SRT-24008)+3 种基金the National Innovation Training Program for College Students in 2024(Grant No.202410755009)the National Natural Science Foundation of China(Grant No.42401065)the Basic and Applied Basic Research Program of Guangdong Province,China(Grant No.2023A1515011273)the Research Projects of the Department of Education of Guangdong Province(Grant No.2023KTSCX315).
文摘Aboveground biomass(AGB)and belowground biomass(BGB)are key components of carbon storage,yet their responses to future climate changes remain poorly understood,particularly in China.Understanding these dynamics is essential for global carbon cycle modeling and ecosystem management.This study integrates field observations,machine learning,and multi-source remote sensing data to reconstruct the distributions of AGB and BGB in China from 2000 to 2020.Then CMIP6 was used to predict the distribution of China under three SSP scenarios(SSP1-1.9,SSP2-4.5,SSP5-8.5)from 2020 to 2100 to fill the existing knowledge gap.The predictive accuracy for AGB(R^(2)=0.85)was significantly higher than for BGB(R^(2)=0.48),likely due to the greater complexity of modeling belowground dynamics.NDVI(Normalized Difference Vegetation Index)and soil organic carbon density(SOC)were identified as the primary drivers of AGB and BGB changes.During 2000-2020,AGB in China remained stable at approximately 10.69 Pg C,while BGB was around 5.06 Pg C.Forest ecosystems contributed 88.52% of AGB and 43.83% of BGB.AGB showed a relatively slow annual increase,while BGB demonstrated a significant annual growth rate of approximately 37 Tg C yr^(−1).Under the low-emission scenario,both AGB and BGB show fluctuations and steady growth,particularly in South China and the northwestern part of Northeast China.Under the moderate-emission scenario,AGB and BGB show significant declines and increases,respectively.In the high-emission scenario,both AGB and BGB decline significantly,particularly in the southwestern and central regions.These results provide valuable insights into ecosystem carbon dynamics under climate change,emphasizing the relatively low responsiveness of AGB and BGB to climatic variability,and offering guidance for sustainable land use and management strategies.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502 to H.S.)the Yunnan Applied Basic Research Project(202001AT070060 to J.G.C.)+1 种基金the CAS“Light ofWest China”Program(J.G.C.)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053 to J.G.C.).
文摘Population shrinkage of alpine cushion plants with ongoing climate warming has been empirically confirmed.Since cushion plants play important roles in sustaining alpine plant community and ecosystem functions,their population dynamics may directly influence the future alpine ecosystems.However,little is known about how climate warming affect cushion population recruitment,especially at early life-history stages.In this study,we conducted a laboratory simulation of climate warming to detect the effects of warming temperature and associated moisture and light changes on seed germination and seedling growth of the typical alpine cushion plant Arenaria oreophila.Results suggested that increasing temperature indeed exerted strong constraints on the population recruitment processes.Specifically,increased temperatures could quickly initialize seed germination(4e6 days at higher temperatures vs.29 e32 days at low temperature,respectively,after sowing),accelerate them to reach the maximum germination percentage(9e19 days at higher temperatures vs.57e86 days at low temperature,respectively,after sowing)and significantly accelerate seedling growth rate.However,higher temperatures accelerated seedling mortality(more than 80%).In addition,lower light availability also increased seedling mortality though it could generally increase the final seed germination percentage.The effects of water might be dependent on temperature and light.All results suggested that cushion A.oreophila is quite sensitive to climate warming which strongly constrains its seedling establishment process.We,therefore,speculate that the continuing climate warming in future will exert uncertain risks in the persistence of cushion A.oreophila,possibly by constraining the process of seedling recruitments.
基金funded by the National Natural Science Foundation of China(42101276)the Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(22JJD790015)the Science and Technology Project of Gansu Province,China(20JR5RA529).
文摘The Qinghai-Xizang Plateau(QXP)serves as a crucial ecological barrier in China and Asia,exerting profound influences on global climate and biodiversity conservation.Gannan Tibetan Autonomous Prefecture(hereinafter referred as Gannan Prefecture),located on the northeastern edge of the QXP,represents a fragile alpine ecosystem in which land use change significantly impacts ecosystem services(ESs).This study established a comprehensive framework,utilizing the Patch-generating Land-Use Simulation(PLUS)model coupled with the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to predict land use patterns under the natural development scenario,cultivated land protection scenario,and ecological protection scenario for Gannan Prefecture by 2030 and evaluated four critical ESs:habitat quality(HQ),water yield(WY),soil retention(SR),and carbon storage(CS).The primary aim is to elucidate the impacts of dynamic land use change on ESs.The results revealed that,from 2000 to 2020,HQ exhibited minimal variation,whereas CS experienced a slight decline.Conversely,WY and SR showed significant improvements.Under the natural development scenario,construction land was projected to increase by 4247.74 hm^(2),primarily at the expense of forest land.The cultivated land protection scenario anticipated an increase in farmland by 2634.36 hm^(2),which was crucial for maintaining food security.The ecological protection scenario predicted a notable expansion of forest land,accompanied by a restrained development rate of construction land.The ecological protection scenario also showed an increase in the ecosystem service index(ESI),encompassing 26.07%of the region.Forest land and grassland emerged as the primary contributors to ESs,while construction land substantially impacted WY.Water bodies exhibited minimal contribution to ESs.This study enhanced the understanding of land use change impacts on ESs in fragile and high-altitude ecosystems,offering essential theoretical frameworks and practical direction for forthcoming ecological policy and regional planning endeavors.
基金Under the auspices of the National Key Research and Development Program of China(No.2022YFC3204404)。
文摘Quantifying and mapping how ecosystem services impact agricultural competitiveness is crucial for attaining the Sustainable Development Goals of United Nations.However,few study quantified agricultural competitiveness and mapped the effects of ecosystem services on agricultural competitiveness using multiple models.In this study,multi-source data from 2000 to 2020 were utilized to establish the indicator system of agricultural competitiveness;five ecosystem services were quantified using computation models;Geographic Information System(GIS)spatial analysis was used to explore the spatial patterns of agricultural competitiveness and ecosystem services;geographic detector models were applied to investigate the effects and driving mechanisms of ecosystem services on agricultural competitiveness.Shandong Province of China was selected as the case study area.The results demonstrated that:1)there was a significant increase in agricultural competitiveness during the study period,with high levels observed mainly in the east region of the study area.2)The spatial distribution patterns of ecosystem services and agricultural competitiveness primarily exhibited High-High and Low-Low Cluster types.3)Habitat quality emerged as the main driving factor of agricultural competitiveness in 2000 and 2020,while water yield played a substantial role in 2010.4)The coupling of two ecosystem services exerted a greater effect on agricultural competitiveness compared to individual ecosystem service.The innovations of this study are constructing an indicator system to quantify agricultural competitiveness,and exploring the effects of ecosystem services on agricultural competitiveness.This study proposed an indicator system to quantify agricultural competitiveness,which can be applied in other regions,and explored the effects of ecosystem services on agricultural competitiveness.The findings of this study can serve as valuable insights for policymakers to formulate tailored agricultural development policies that take into account the synergistic effects of ecosystem services on agricultural competitiveness.
基金the Second Tibetan Plateau Scientific Expedition and Research program(2024QZKK0200)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U23A20149)+2 种基金Yunnan Key R&D Program(202403AC00028)for supporting the fieldexcursion,samples collections and ecological experiment in QTP.Rest co-authors acknowledge the Yunnan Innovation Team Project(202305AS350004 to Yang Yang)the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053 to Jianguo Chen)the CAS“Light of West China”Program(xbzg-zdsys-202319 to Bo Song),Yunnan Revitalization Talent Support Program“Young Talent”Project(to Yazhou Zhang),National Youth Talent Support Program(to Yang Niu)and Postdoctoral(oversea)Fund of Ministry of Education of China(to Zihan Jiang)。
文摘As the highest and largest plateau in the world,the Qinghai-Tibet Plateau(QTP)covers wide geological,topographical and climatic gradients and thus acts as a major center for biodiversity and houses a diverse array of high elevation ecosystems.Together these factors make the QTP a critical ecological shield for Asia.However,the composition,structure and function of plant diversity in QTP has experienced profound changes in recent decades.Long-term on-site monitoring,fieldexperiments,remote sensing,and simulations have led to significantadvances in our understanding of how plant diversity on the QTP has responded to climate change and human activity.This review synthesizes findingsfrom previous researches on how climate change and human activity have impacted plant diversity on the QTP.We identify gaps in our knowledge and highlight the need for interdisciplinary studies,long-term monitoring networks,and adaptive management strategies to enhance our knowledge and safeguard the QTP’s biodiversity amid accelerating global climate change.
基金Three Gorges Follow-up Work Fund,Grant/Award Number:WE0161A042024National Key Research Program of China,Grant/Award Number:2024YFC3210900。
文摘River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by generations of water resources professionals.Rooted in river ecology,it offers a framework for advancing modern water governance systems and capabilities.This paper examines eight dimensions of river ethics to provide actionable recommendations:enhancing knowledge systems on water,rivers,and lakes;addressing critical challenges in water governance to strengthen the foundational role of water authorities in ensuring water security,resource management,ecological sustainability and environmental protection;optimizing water project planning to mitigate ecological impacts;ensuring high standards in the lifecycle management of water projects;refining water diversion strategies for precise scheduling;utilizing ecosystem complexity for river and lake restoration;implementing tiered management of water-related disasters;and driving reforms to modernize water governance systems and mechanisms.
基金funded by the Central University D Project(HFW230600022)National Natural Science Foundation of China(71973021)+1 种基金National Natural Science Foundation Youth Funding Project(72003022)Heilongjiang Province University Think Tank Open Topic(ZKKF2022173).
文摘The scientific assessment of ecosystem ser-vice value(ESV)plays a critical role in regional ecologi-cal protection and management,rational land use planning,and the establishment of ecological security barriers.The ecosystem service value of the Northeast Forest Belt from 2005 to 2020 was assessed,focusing on spatial–temporal changes and the driving forces behind these dynamics.Using multi-source data,the equivalent factor method,and geo-graphic detectors,we analyzed natural and socio-economic factors affecting the region.which was crucial for effective ecological conservation and land-use planning.Enhanced the effectiveness of policy formulation and land use plan-ning.The results show that the ESV of the Northeast Forest Belt exhibits an overall increasing trend from 2005 to 2020,with forests and wetlands contributing the most.However,there are significant differences between forest belts.Driven by natural and socio-economic factors,the ESV of forest belts in Heilongjiang and Jilin provinces showed significant growth.In contrast,the ESV of Forest Belts in Liaoning and Inner Mongolia of China remains relatively stable,but the spatial differentiation within these regions is characterized by significant clustering of high-value and low-value areas.Furthermore,climate regulation and hydrological regulation services were identified as the most important ecological functions in the Northeast Forest Belt,contributing greatly to regional ecological stability and human well-being.The ESV in the Northeast Forest Belt is improved during the study period,but the stability of the ecosystem is still chal-lenged by the dual impacts of natural and socio-economic factors.To further optimize regional land use planning and ecological protection policies,it is recommended to prior-itize the conservation of high-ESV areas,enhance ecological restoration efforts for wetlands and forests,and reasonably control the spatial layout of urban expansion and agricul-tural development.Additionally,this study highlights the importance of tailored ecological compensation policies and strategic land-use planning to balance environmental protec-tion and economic growth.
基金funded by the National Natural Science Foundation of China(52079103)the Outstanding Youth Science Fund of Xi'an University of Science and Technology(2024YQ2-02).
文摘The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.
基金jointly supported by the National Natural Science Foundation of China [grant number 42265012]the Funding by the Fengyun Application Pioneering Project [grant number FY-APP-ZX-2022.0221]。
文摘Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.42425107)Ecological Civilization Special Project of Key Research&and Development Program in Gansu Province(No.24YFFA009)the Top Talent Project of Gansu Province,Chinese Academy of Sciences Young Crossover Team Project(No.JCTD-2022-18)。
文摘The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.