The construction of an ecological security pattern(ESP)is an important way to ensure regional ecological security and to achieve sustainable regional development.It is also one of the hotspot topics of landscape ecolo...The construction of an ecological security pattern(ESP)is an important way to ensure regional ecological security and to achieve sustainable regional development.It is also one of the hotspot topics of landscape ecology research.This paper identifies the ecological source through the evaluation of the ecosystem service and ecosystem sensitivity of the Lanzhou-Xining(Lan-Xi)urban agglomeration.The minimum cumulative resistance(MCR)model modified by night light data NPP/VIIRS(National Polar-orbiting Operational Environmental Satellite System Preparatory Project/Visible Infrared Imaging Radiometer Suite)was used to measure the relative resistance of the materials and energy circulation between the source areas,and to establish the resistance surface of the ecological source area expansion.Then ecological corridors were identified based on ecological sources and resistance surface.The ecological strategic node is the ecological fragile point in the ecological corridors.The ecological strategic node is identified with hydrological module by superimposing the"ridge line"of cumulative ecological resistance with the ecological corridor.Combined with ecological sources,corridors and strategic nodes,the ESP of the Lan-Xi urban agglomeration can be constructed.The ecological source of the Lan-Xi urban agglomeration accounts for 28.42%of the total area,most of which is distributed within Qinghai Province.The nature reserves in the area are all located within the ecological source area.A total of 41 potential ecological corridors have been identified in the study area.The total length of the potential corridors is 1201.03 km,comprising 23 source corridors and 18 radiation corridors.There are 30 strategic nodes identified in the Lan-Xi urban agglomeration.These locations are the most vulnerable areas of the ecological corridors.Ecological engineering should be applied in the construction of corridors.Affected by the ecological source,the potential ecological corridor extends from the northwest to the southeast,which is basically consistent with the direction trend of the mountains in the region.展开更多
Assessing the sensitivities of ecosystem functions to climatic factors is essential to understanding the response of ecosystems to environmental change.Temperate plantation forests contribute to global greening and cl...Assessing the sensitivities of ecosystem functions to climatic factors is essential to understanding the response of ecosystems to environmental change.Temperate plantation forests contribute to global greening and climate change mitigation,yet little is known as to the sensitivity of gross primary production(GPP)and evapotranspiration(ET)of these forests to heat and drought stress.Based on near-continuous,eddy-covariance and hydrometeorological data from a young temperate plantation forest in Beijing,China(2012-2019),we used a slidingwindow-fitting technique to assess the seasonal and interannual variation in ecosystem sensitivity(i.e.,calculated slopes,S_(GPP-Ta),S_(ET-Ta),S_(GPP-EF),and S_(ET-EF))in GPP and ET to anomalies in air temperature(T_(a))and evaporative fraction(EF).The EF was used here as an indicator of drought.Seasonally,daily SGPP-Ta,SET-Ta,and SGPP-EF were greatest in summer,reaching maxima of 1.120.56 g C··m^(-2)·d^(-1)·℃^(-1),1.360.56 g H_(2)O·m^(-2)·d^(-1)·℃^(-1),and 0.370.35 g C·m^(-2)·d^(-1),respectively.Evapotranspiration was constrained by drought,especially during the spring-to-summer period,SET-EF reaching0.510.34 g H_(2)O·m^(-2)·d^(-1).Variables EF,T_(a),soil water content(SWC),vapor pressure deficit(VPD),and precipitation(PPT)were the main controls of sensitivity,with SGPP-Ta and SET-Ta increasing with Ta,VPD,and PPT(<50 mm·d^(-1))during both spring and autumn.Increased drought stress during summer caused the positive response in GPP and ET to decrease with atmospheric warming.Variable SET-EF intensified(i.e.,became more negative)with decreasing EF and increasing Ta.Interannually,annual S_(GPP-Ta)and S_(ET-Ta)were positive,S_(GPP-EF)near-neutral,and S_(ET-EF)negative.Interannual variability in S_(GPP-Ta),S_(ET-Ta),S_(ET-EF),and S_(GPP-EF)was largely due to variations in bulk surface conductance.Our study suggests that the dynamics associated with the sensitivity of ecosystems to changes in climatic factors need to be considered in the management of plantation forests under future global climate change.展开更多
Assessments on ecological sensitivity and ecosystem service value are two important basic works in eco-functional regionalization. According to the special ecological environment in Guizhou Province,GIS technology was...Assessments on ecological sensitivity and ecosystem service value are two important basic works in eco-functional regionalization. According to the special ecological environment in Guizhou Province,GIS technology was used in the classification evaluations of soil erosion sensitivity,acid rain sensitivity and rocky desertification sensitivity in Bijie Prefecture,and then the comprehensive evaluation on eco-environmental sensitivity was carried out. Finally,the preliminary economic estimation of ecosystem service value in Bijie Prefecture was made by means of the appraisal approach for ecosystem service proposed by Costanza.展开更多
The Tibetan Plateau(TP),known as the“Third Pole of Earth”,and its ecosystem is quite sensitive to climate change(Yao et al.,2012;Qiu,2008).In recent decades,the main TP has experienced warming and humidification(alt...The Tibetan Plateau(TP),known as the“Third Pole of Earth”,and its ecosystem is quite sensitive to climate change(Yao et al.,2012;Qiu,2008).In recent decades,the main TP has experienced warming and humidification(although there has been a drying trend in the southern region),and researchers anticipate that this change will continue in the future(Jiang et al.,2023;Sun et al.,2020;Chen et al.,2015).展开更多
基金funded by the Improvement Plan of Scientific Research Ability in Northwest Normal University(NWNU-LKQN2020-16)National Science Foundation of China(Grant No.41771130)。
文摘The construction of an ecological security pattern(ESP)is an important way to ensure regional ecological security and to achieve sustainable regional development.It is also one of the hotspot topics of landscape ecology research.This paper identifies the ecological source through the evaluation of the ecosystem service and ecosystem sensitivity of the Lanzhou-Xining(Lan-Xi)urban agglomeration.The minimum cumulative resistance(MCR)model modified by night light data NPP/VIIRS(National Polar-orbiting Operational Environmental Satellite System Preparatory Project/Visible Infrared Imaging Radiometer Suite)was used to measure the relative resistance of the materials and energy circulation between the source areas,and to establish the resistance surface of the ecological source area expansion.Then ecological corridors were identified based on ecological sources and resistance surface.The ecological strategic node is the ecological fragile point in the ecological corridors.The ecological strategic node is identified with hydrological module by superimposing the"ridge line"of cumulative ecological resistance with the ecological corridor.Combined with ecological sources,corridors and strategic nodes,the ESP of the Lan-Xi urban agglomeration can be constructed.The ecological source of the Lan-Xi urban agglomeration accounts for 28.42%of the total area,most of which is distributed within Qinghai Province.The nature reserves in the area are all located within the ecological source area.A total of 41 potential ecological corridors have been identified in the study area.The total length of the potential corridors is 1201.03 km,comprising 23 source corridors and 18 radiation corridors.There are 30 strategic nodes identified in the Lan-Xi urban agglomeration.These locations are the most vulnerable areas of the ecological corridors.Ecological engineering should be applied in the construction of corridors.Affected by the ecological source,the potential ecological corridor extends from the northwest to the southeast,which is basically consistent with the direction trend of the mountains in the region.
基金supported by the National Key Research and Development Program of China(No.2020YFA0608100)the National Natural Science Foundation of China(NSFC,No.32071842 and 32101588)。
文摘Assessing the sensitivities of ecosystem functions to climatic factors is essential to understanding the response of ecosystems to environmental change.Temperate plantation forests contribute to global greening and climate change mitigation,yet little is known as to the sensitivity of gross primary production(GPP)and evapotranspiration(ET)of these forests to heat and drought stress.Based on near-continuous,eddy-covariance and hydrometeorological data from a young temperate plantation forest in Beijing,China(2012-2019),we used a slidingwindow-fitting technique to assess the seasonal and interannual variation in ecosystem sensitivity(i.e.,calculated slopes,S_(GPP-Ta),S_(ET-Ta),S_(GPP-EF),and S_(ET-EF))in GPP and ET to anomalies in air temperature(T_(a))and evaporative fraction(EF).The EF was used here as an indicator of drought.Seasonally,daily SGPP-Ta,SET-Ta,and SGPP-EF were greatest in summer,reaching maxima of 1.120.56 g C··m^(-2)·d^(-1)·℃^(-1),1.360.56 g H_(2)O·m^(-2)·d^(-1)·℃^(-1),and 0.370.35 g C·m^(-2)·d^(-1),respectively.Evapotranspiration was constrained by drought,especially during the spring-to-summer period,SET-EF reaching0.510.34 g H_(2)O·m^(-2)·d^(-1).Variables EF,T_(a),soil water content(SWC),vapor pressure deficit(VPD),and precipitation(PPT)were the main controls of sensitivity,with SGPP-Ta and SET-Ta increasing with Ta,VPD,and PPT(<50 mm·d^(-1))during both spring and autumn.Increased drought stress during summer caused the positive response in GPP and ET to decrease with atmospheric warming.Variable SET-EF intensified(i.e.,became more negative)with decreasing EF and increasing Ta.Interannually,annual S_(GPP-Ta)and S_(ET-Ta)were positive,S_(GPP-EF)near-neutral,and S_(ET-EF)negative.Interannual variability in S_(GPP-Ta),S_(ET-Ta),S_(ET-EF),and S_(GPP-EF)was largely due to variations in bulk surface conductance.Our study suggests that the dynamics associated with the sensitivity of ecosystems to changes in climatic factors need to be considered in the management of plantation forests under future global climate change.
基金Supported by Major State Basic Research Development Program of China("973" Program)(2006CB403200)Scientific and Technological Project of Guizhou Province(GY[2008]3022)
文摘Assessments on ecological sensitivity and ecosystem service value are two important basic works in eco-functional regionalization. According to the special ecological environment in Guizhou Province,GIS technology was used in the classification evaluations of soil erosion sensitivity,acid rain sensitivity and rocky desertification sensitivity in Bijie Prefecture,and then the comprehensive evaluation on eco-environmental sensitivity was carried out. Finally,the preliminary economic estimation of ecosystem service value in Bijie Prefecture was made by means of the appraisal approach for ecosystem service proposed by Costanza.
基金supported by the Basic Science Center for Tibetan Plateau Earth System(No.41988101)the Science and Technology Plan Project of the Xizang Autonomous Region(No.XZ202201ZD0005G01)。
文摘The Tibetan Plateau(TP),known as the“Third Pole of Earth”,and its ecosystem is quite sensitive to climate change(Yao et al.,2012;Qiu,2008).In recent decades,the main TP has experienced warming and humidification(although there has been a drying trend in the southern region),and researchers anticipate that this change will continue in the future(Jiang et al.,2023;Sun et al.,2020;Chen et al.,2015).