Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zo...To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.展开更多
To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,t...To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,thereby improving both microstructure uniformity and mechanical properties of sintered bodies.The results indicate that WIP reduces defects in MEX greens,thus decreasing the dimensions and numbers of defects,modifying shapes of pores within sintered bodies,while preserving surface quality and shape characteristics.Compared with WC-9Co prepared via MEX followed by debinding and sintering(DS),the hardness of WC-9Co prepared using MEX-WIP-DS does not change significantly,ranging HV_(30)1494-1508,the transverse rupture strength increases by up to 49.3%,reaching 2998-3514 MPa,and the fracture toughness remains high,ranging 14.8-17.0 MPa·m^(1/2).The mechanical properties surpass comparable cemented carbides fabricated through other AM methods and are comparable to those produced by powder metallurgy.The integration of green WIP into MEX-DS broadens the MEX processing window,and improves the overall mechanical properties of MEX AM WC-Co cemented carbides.展开更多
The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on ...The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.展开更多
The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe...The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.展开更多
The Mg-Y-Zn magnesium alloy system is known for the presence of Long-Period Stacking Ordered(LPSO)phases that improves strength and ductility with minimal amounts of alloying elements.Even better improvements are asso...The Mg-Y-Zn magnesium alloy system is known for the presence of Long-Period Stacking Ordered(LPSO)phases that improves strength and ductility with minimal amounts of alloying elements.Even better improvements are associated with the specific microstructure known as the Mille-Feuille(MF)structure that can occur in this alloy as well after proper heat treatment.This study systematically compares the traditional ingot metallurgy method with the Bridgman method(slow cooling),coupled with diverse heat treatments and extrusion process.Microscopic analyses reveal variations in the presence of LPSO phases,MF structure,and especially grain size,leading to divergent mechanical and corrosion properties.The Bridgman approach surprisingly stands out,ensuring superior mechanical properties due to kink and texture strengthening.展开更多
Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered ext...Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.展开更多
Investment casting shell moulds are widely applied to cast alloys, but how to efficiently form a hierarchical porous structure inside the wall is an innovation and challenge. In this research, porous shell moulds with...Investment casting shell moulds are widely applied to cast alloys, but how to efficiently form a hierarchical porous structure inside the wall is an innovation and challenge. In this research, porous shell moulds with three infill patterns(rectilinear, grid, and honeycomb) were prepared using bauxite slurry and slurry extrusionbased additive manufacturing technology, and the effects of infill patterns on the properties were evaluated. The hierarchical pores inside the wall are composed of the macropores formed by infills and the micropores among bauxite particles. Different infill patterns result in changes in distribution and shape of pores, thereby affecting the properties of the shell moulds. The honeycomb pattern has more comprehensive advantages compared to the other two infill patterns. The samples prepared with the honeycomb pattern exhibit the highest bending strength(11.62 MPa) and porosity(41.6%), as well as good heat-transfer ability, with an average shrinkage rate within 2.0%. This work provides an attractive feasibility for fabricating shell moulds with hierarchical porous walls.展开更多
Prefabricated twinning represents an effective strategy for optimizing the microstructure of extruded forming components and facilitating changes in texture.The study examines the incorporation of[10-12]twins into an ...Prefabricated twinning represents an effective strategy for optimizing the microstructure of extruded forming components and facilitating changes in texture.The study examines the incorporation of[10-12]twins into an AZ31 magnesium alloy billet via cold pre-upsetting deformation before alternating forward extrusion(CUAFE).The experimental results indicate that the initial presence of[10-12]twins is advantageous for the development of[10-10]and[11-20]texture components during the extrusion process.In addition,different DRX mechanisms have different influences on the evolution of basal texture.The CDRX grains tend to preferentially select the[11-20]texture orientation,weakening the[10-10]texture and enhancing the[11-20]texture.However,most DDRX grains deviate significantly from the orientation of their surrounding original grain and do not have a preferred orientation.This is reflected in the mechanical properties of the CUAFE part.The tensile strength is 323.5 MPa,while the elongation is as high as 20.1%.展开更多
This work managed the extrusion strain path by designing various extrusion die cavities,successfully realizing the texture modification for the ZK60 magnesium alloy.The mechanisms involving the texture dependence on t...This work managed the extrusion strain path by designing various extrusion die cavities,successfully realizing the texture modification for the ZK60 magnesium alloy.The mechanisms involving the texture dependence on the extrusion die cavity as well as their effects on the mechanical properties were emphatically investigated.Results showed that dynamic recrystallization refined the grain size and improved the microstructure homogeneity in the three extrusion specimens,but did not produce too large microstructure differences.By comparison,significant texture differences developed owing to the various extrusion die cavities,which here were mainly reflected in the strong or weak texture components for the c-axes//TD and the c-axes//ND.Such texture differences started from the deformation texture instead of the recrystallization texture whose roles only consisted in dispersing the texture component and reducing the texture intensity.The results from the finite element analysis and the visco-plastic self-consistent model indicated that,in order to accommodate the different strain components induced by the extrusion die cavities,slip systems or tension twinning were activated differently,and this was the critical reason causing the above texture differences.One modified Hall-Petch relationship was adopted to analyze the conjoint effects of grain refinement and texture variation on the yield stress.Additionally,the quantitative results about deformation mechanism activation fractions demonstrated that the texture variations influenced the competition relationships between the twinning induced deformation and the slip dominant deformation,and the former generally produced the lower yield stress and the increasing stage of strain hardening rate,while the latter produced the higher yield stress and the continuous decline of strain hardening rate.展开更多
Obtaining high strength in low-RE-alloyed Mg alloys(RE<6 wt%)remains a huge challenge so far.In this work,we fabricated a novel high-strength and low-RE-alloyed Mg-3Yb-0.6Zn-0.4Zr(wt%)alloy using the conventional e...Obtaining high strength in low-RE-alloyed Mg alloys(RE<6 wt%)remains a huge challenge so far.In this work,we fabricated a novel high-strength and low-RE-alloyed Mg-3Yb-0.6Zn-0.4Zr(wt%)alloy using the conventional extrusion at low temperature,which breaks through the stereotypical"fewer RE,lower strength"wisdom.The microstructure of the alloy and mechanical properties were examined with op-tical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and Instron testing machine.This alloy exhibits a high tensile yield strength of 410 MPa and a favorable elongation of 7.8%,outperforming the majority of traditional high-strength Mg-Gd-Y(-Zn)-Zr extrusion alloys with high RE additions,at least 12 wt%.The high yield strength of the alloy is closely associated with the synergistic effect of submicron recrystallized grains and highly-textural hot-worked grains containing numerous dynamic precipitates and residual dislocations,rather than the widely-considered age-hardening in those heavy RE containing Mg alloys.This work provides an important reference for the development of high-performance extruded Mg alloys with low RE solutes.展开更多
The utilization of lunar regolith for construction on the lunar surface presents a critical challenge in-situ resource utilization.This study proposes a lunar regolith manufacturing method that uses a high-performance...The utilization of lunar regolith for construction on the lunar surface presents a critical challenge in-situ resource utilization.This study proposes a lunar regolith manufacturing method that uses a high-performance resin binder characterized by a high regolith content and strong forming capabilities.A combined resin material with both thermosetting and photosetting properties was developed and mixed with lunar regolith to create a slurry.This slurry can be directly molded or additively extruded into green bodies with specific structures.These green bodies can self-cure under the high temperatures and ultraviolet radiation experienced during the lunar day,reducing energy consumption and fulfilling the requirements of lunar construction.The material-forming processes and effects of various additive types and concentrations,regolith mass ratios,and processing parameters on the properties of the slurry and the formed specimens were thoroughly investigated.The mechanical performance and microstructure of the fabricated samples were analyzed.The lunar regolith mass ratio reached 90 wt%(approximately 79 vol%),with the highest compressive strengths exceeding 60 MPa for cast specimens and 30 MPa for printed samples.This technology shows significant potential for enabling in-situ lunar regolith-based construction in future lunar missions.展开更多
The microstructure and mechanical properties of Mg−4.5Al−2.5Zn−0.3Mn−0.2Ca(wt.%,designated as AZ42)alloys in extruded(at extrusion ratios of 28,20 and 11.5)and peak-aged states were investigated,by using optical micro...The microstructure and mechanical properties of Mg−4.5Al−2.5Zn−0.3Mn−0.2Ca(wt.%,designated as AZ42)alloys in extruded(at extrusion ratios of 28,20 and 11.5)and peak-aged states were investigated,by using optical microscopy,scanning electron microscopy,energy dispersive spectrometry and electron backscatter diffraction.The results show that extrusion produces a typical basal fiber texture and streamlines of second phases.All samples exhibit the lowest Schmid factor of basal slip(SFb)and the superior tensile yield strength(TYS)along extrusion direction(ED).The sample with extrusion ratio of 20 exhibits the largest average grain size,but the smallest SFb which compensates for the disadvantage of grain coarsening and maintains the strength.After being peak-aged at 175℃for 48 h,the sample with the extrusion ratio of 20 shows the optimal TYS along all the directions,compared to the other samples.This hopes to provide useful information for optimizing the deformation parameters of the AZ42 alloys.展开更多
In the current study the wear behavior of the ZK60/SiC composites reinforced by particles and whiskers in both as-cast and extruded conditions was examined.Furthermore,the wear behavior of the extruded samples along t...In the current study the wear behavior of the ZK60/SiC composites reinforced by particles and whiskers in both as-cast and extruded conditions was examined.Furthermore,the wear behavior of the extruded samples along the extrusion direction and perpendicular to the extrusion direction was studied.The wear tests were performed at temperatures of 100,200,and 300℃under loads of 10,20,and 30 N.The results showed that the whisker-reinforced sample(5.8×10^(–4)g/[N.m])had higher wear resistance than the particle-reinforced sample(1.3×10^(–3)g/[N.m]).The lowest wear rate was observed for the extruded sample in the extrusion direction(3.53×10^(–4)g/[N.m]).It was also found that the wear rate increased by∼20%with increasing temperature,but in the ZK60/SiC_(w)sample,dynamic precipitation increased the wear resistance.The coefficient of friction was also found to increase with rising temperature,showing an increase of approximately 12.5%at a 10 N load and 20%at a 30 N load.Examination of the worn surfaces by scanning electron microscopy showed that the as-cast ZK60 alloy at 100℃had the oxidative-abrasive as the dominant mechanism.It was found that by extruding the sample,the strength of the sample increased and the mechanism changed to adhesive wear.In the ZK60/SiC_(p)composite,the viscoplastic wear mechanism was dominant.Although in the extruded sample the dominant mechanism changed to plastic deformation.As temperature increases,the viscoplastic wear mechanism became dominant again.In the as-cast ZK60/SiC_(w)composite,the abrasive wear mechanism changed to delamination with increasing temperature.By extruding the sample,the dominant mechanism changed to adhesive wear.Finally,dynamic precipitation induced by temperature caused an increase in the wear resistance.展开更多
Through the innovative integration of semi-solid rheo-casting with extrusion shear process,the short-process fabrication of low-alloyed wrought Mg-2Zn-1Mn alloy is achieved in this study.Uniaxial tensile testing of lo...Through the innovative integration of semi-solid rheo-casting with extrusion shear process,the short-process fabrication of low-alloyed wrought Mg-2Zn-1Mn alloy is achieved in this study.Uniaxial tensile testing of low-temperature extrusion shear specimens(200℃)demonstrates the exceptional strength-ductility synergy,yield strength of 277 MPa,yield strength ratio of 0.95,and elongation of 24%.Microstructural observations reveal the mechanisms underlying its high strength-plasticity synergy at room temperature.This study investigates the effects of different temperature gradients on the microstructure by analyzing experiments conducted at three temperatures:300℃,250℃,and 200◦C.Ultimately,the formation mechanism of the bimodal microstructure obtained at 200℃ is elucidated.The distinctive crystallographic texture oriented at 34°relative to the loading axis direction effectively mitigates stress concentration by inducing the synergistic activation of multiple slip systems.Furthermore,the transition trends of different slip systems and texture evolution during tensile deformation are validated through Visco-Plastic Self-Consistent(VPSC)simulations and corroborated by microstructural analysis.With geometrically necessary dislocation(GND)density(4.28×10^(15)m^(-2))and pyramidal slip activation(~45%).This study has successfully broken through the bottleneck of strength-ductility trade-off in magnesium alloys,providing theoretical support for the development of high-reliability magnesium alloys.展开更多
The microstructure and texture evolutions during extrusion and rolling processes of the 2195 Al−Li alloy were investigated.The EBSD technique was employed to reveal the microscopic evolution mechanisms of different te...The microstructure and texture evolutions during extrusion and rolling processes of the 2195 Al−Li alloy were investigated.The EBSD technique was employed to reveal the microscopic evolution mechanisms of different texture components.The findings reveal that the texture evolution is governed by two mechanisms:an overall orientation transformation induced by plastic strain and a localized transformation occurring at the shearing bands within grains.During the rolling process,the extrusion texture components of Ex{123}<111>and Cu{112}<111>evolve into S{123}<634>,and the Bs{011}<211>rotates into the orientations near R-Bs and S.With increasing deformation,the S,Bs,and R-Bs orientations further rotate around the TD axis and disperse into new orientations,forming recrystallized grains.The shearing bands with different initial orientations exhibit similar orientation evolution patterns,all of which evolve from the initial orientation to a series of recrystallization orientations.展开更多
Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy wa...Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy was systematically investigated.With the increase of extrusion rate,the average recrystallized grain size of Mg-1.2Y-1.2Ni alloy and mean particle diameter of Mg2Ni phase were increased,while the density of geometrically necessary dislocation and the intensity of the basal texture were decreased.When extrusion rate increases from 1 to 6 mm/s,the tensile yield strength(TYS)of asextruded Mg-1.2Y-1.2Ni alloy decreases from 501 to 281 MPa,while the elongation to failure increases from 1.5%to 6.2%.The Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s obtained TYS of 421 MPa,the ultimate tensile strength(UTS)of 440 MPa and elongation to failure of 2.6%,respectively,exhibiting comprehensive mechanical properties with relatively good plasticity and ultrahigh strength.The ultrahigh TYS of 501 and 421 MPa was mainly due to the strengthening from ultrafine recrystallized grains,high volume fraction long period stacking ordered(LPSO)phases and high density dislocations.展开更多
Based on thermodynamic calculations and continuous rheological extrusion(CRE)technology,Al-Ti-V-B master alloys were designed and prepared.The morphology and the distribution of the refined phases in the master alloys...Based on thermodynamic calculations and continuous rheological extrusion(CRE)technology,Al-Ti-V-B master alloys were designed and prepared.The morphology and the distribution of the refined phases in the master alloys were analyzed by XRD,SEM,and TEM.The effects of master alloy addition and holding time on the microstructure and mechanical properties of A356 alloy were investigated.Under the optimum refiner addition of 0.3wt.%and the holding time of 20 min,the average grain size of the refined A356 alloy is 151.8±9.11μm,89.62%lower than that of original A356 alloy.The tensile strength and elongation of as-cast A356refined alloy are 196.11 MPa and 5.75%,respectively.After T6 treatment,the tensile strength and elongation of A356 refined alloy are 290.1 MPa and 3.09%,respectively.The fracture morphology is characterized by a predominance of along-crystal fracture with a small amount of through-crystal fracture,attributed to the refined grains.Finer grains promote crack path deflection and localized plastic deformation,enhancing energy dissipation and reducing the tendency for brittle fracture.This study provides a novel approach to improving the mechanical properties of A356 alloy through grain refinement using CRE Al-Ti-V-B master alloy.展开更多
The effect of extrusion temperature on the dynamic recrystallization behavior and mechanical properties of the flame-retardant Mg−6Al−3Ca−1Zn−1Sn−Mn(wt.%)alloy was investigated.The observed dynamic recrystallization m...The effect of extrusion temperature on the dynamic recrystallization behavior and mechanical properties of the flame-retardant Mg−6Al−3Ca−1Zn−1Sn−Mn(wt.%)alloy was investigated.The observed dynamic recrystallization mechanisms in the alloy include continuous dynamic recrystallization(CDRX)and particle simulated nucleation(PSN)during hot extrusion.A significant increase in yield strength,from 218 to 358 MPa,representing a 140 MPa increase,is achieved by decreasing the extrusion temperature.The strengthening mechanisms were analyzed quantitatively,with the enhanced strength primarily attributed to grain boundary and dislocation strengthening.The plasticity mechanism was analyzed qualitatively,and the increase in the volume fraction of unDRXed grains caused by the decrease in extrusion temperature leads to an increase in the number of{1012}tensile twins during the tensile deformation,resulting in a reduction in plasticity.展开更多
The effects of trace Ag on the tensile strength and creep resistance of Mg-7.5Gd-1.5Y-0.4Zr(wt.%)extrusion bars were investigated at temperatures of 175-275℃,via tensile tests and creep tests,electron back-scatter di...The effects of trace Ag on the tensile strength and creep resistance of Mg-7.5Gd-1.5Y-0.4Zr(wt.%)extrusion bars were investigated at temperatures of 175-275℃,via tensile tests and creep tests,electron back-scatter diffraction,and transmission electron microscopy.Adding trace Ag improves the tensile strength and creep resistance of Mg-Gd-Y-Zr alloys at elevated temperatures.During the creep process,precipitate-free zones(PFZs)are formed near grain boundaries and perpendicular to the loading direction,while chain-likeβ′-Mg7RE precipitates are distributed in a special direction([1010])in grain interior.After adding Ag element,the creep resistance of the Mg-Gd-Y-Zr-Ag is improved due to the suppression of dislocation movement by the synergistic effect of narrower PFZs,finerβ′-Mg7RE precipitates in the grain interior and more stable β-Mg_(5)RE phase located on the grain boundaries.展开更多
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金Projects(51334006,50274020)supported by the National Natural Science Foundation of China
文摘To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.
基金supported by the Key Project of Chinese Academy of Engineering(No.2019-XZ-11)the General Project of Chinese Academy of Engineering(No.2023-XY-18)+1 种基金the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials of China(No.HKDNM201907)the Independent Project of State Key Laboratory of Powder Metallurgy,China。
文摘To tackle the common issue of green defects in material extrusion(MEX)additive manufacturing(AM)cemented carbides,warm isostatic pressing(WIP)was introduced to eliminate defects of MEX WC-9Co cemented carbide greens,thereby improving both microstructure uniformity and mechanical properties of sintered bodies.The results indicate that WIP reduces defects in MEX greens,thus decreasing the dimensions and numbers of defects,modifying shapes of pores within sintered bodies,while preserving surface quality and shape characteristics.Compared with WC-9Co prepared via MEX followed by debinding and sintering(DS),the hardness of WC-9Co prepared using MEX-WIP-DS does not change significantly,ranging HV_(30)1494-1508,the transverse rupture strength increases by up to 49.3%,reaching 2998-3514 MPa,and the fracture toughness remains high,ranging 14.8-17.0 MPa·m^(1/2).The mechanical properties surpass comparable cemented carbides fabricated through other AM methods and are comparable to those produced by powder metallurgy.The integration of green WIP into MEX-DS broadens the MEX processing window,and improves the overall mechanical properties of MEX AM WC-Co cemented carbides.
基金Project (51175055) supported by the National Natural Science Foundation of ChinaProject (201102020) supported by the Natural Science Foundation of Liaoning Province, ChinaProject (200921085) supported by the Liaoning BaiQian Wan Talents Program, China
文摘The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.
基金Project(51275475)supported by the National Natural Science Foundation of ChinaProject(2014BY001)supported by the Department of Education in Zhejiang Province,ChinaProject(2014EP0110)supported by the Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education and Zhejiang Province,China
文摘The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.
基金supported by Japan Society for the Promotion of Science(KAKENHI Grant-in-Aid for Scientific Research,18H05475,18H05476 and JP20H00312)MRC International Collaborative Research Grant+4 种基金The authors would like to thank the Czech Science Foundation(Project No.22-22248S)specific university research(A1_FCHT_2024_007)for financial supportsupported by the Ministry of Education,Youth,and Sports of the Czech Republic.Project No.CZ.02.01.01/00/22_008/0004591co-funded by the European UnionCzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements/sample fabrication at LNSM Research Infrastructure。
文摘The Mg-Y-Zn magnesium alloy system is known for the presence of Long-Period Stacking Ordered(LPSO)phases that improves strength and ductility with minimal amounts of alloying elements.Even better improvements are associated with the specific microstructure known as the Mille-Feuille(MF)structure that can occur in this alloy as well after proper heat treatment.This study systematically compares the traditional ingot metallurgy method with the Bridgman method(slow cooling),coupled with diverse heat treatments and extrusion process.Microscopic analyses reveal variations in the presence of LPSO phases,MF structure,and especially grain size,leading to divergent mechanical and corrosion properties.The Bridgman approach surprisingly stands out,ensuring superior mechanical properties due to kink and texture strengthening.
基金Project(JQ2022E004)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.
基金financially supported by the National Natural Science Foundation of China (No. 52062029)the Key Science and Technology Project of Gansu Province (No. 18YF1GA064)the Natural Science Foundation of Gansu Provence (No. 25JRRA094)。
文摘Investment casting shell moulds are widely applied to cast alloys, but how to efficiently form a hierarchical porous structure inside the wall is an innovation and challenge. In this research, porous shell moulds with three infill patterns(rectilinear, grid, and honeycomb) were prepared using bauxite slurry and slurry extrusionbased additive manufacturing technology, and the effects of infill patterns on the properties were evaluated. The hierarchical pores inside the wall are composed of the macropores formed by infills and the micropores among bauxite particles. Different infill patterns result in changes in distribution and shape of pores, thereby affecting the properties of the shell moulds. The honeycomb pattern has more comprehensive advantages compared to the other two infill patterns. The samples prepared with the honeycomb pattern exhibit the highest bending strength(11.62 MPa) and porosity(41.6%), as well as good heat-transfer ability, with an average shrinkage rate within 2.0%. This work provides an attractive feasibility for fabricating shell moulds with hierarchical porous walls.
基金supported by the National Natural Science Foundation of China(No.52475341).
文摘Prefabricated twinning represents an effective strategy for optimizing the microstructure of extruded forming components and facilitating changes in texture.The study examines the incorporation of[10-12]twins into an AZ31 magnesium alloy billet via cold pre-upsetting deformation before alternating forward extrusion(CUAFE).The experimental results indicate that the initial presence of[10-12]twins is advantageous for the development of[10-10]and[11-20]texture components during the extrusion process.In addition,different DRX mechanisms have different influences on the evolution of basal texture.The CDRX grains tend to preferentially select the[11-20]texture orientation,weakening the[10-10]texture and enhancing the[11-20]texture.However,most DDRX grains deviate significantly from the orientation of their surrounding original grain and do not have a preferred orientation.This is reflected in the mechanical properties of the CUAFE part.The tensile strength is 323.5 MPa,while the elongation is as high as 20.1%.
基金supported by National Natural Science Foundation of China(Grant No.52205344,51925401)Postdoctoral Research Foundation of China(Grant No.2023M732398)+1 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2023-1)Key Research and Development Program of Shandong Province(Grant No.2023CXPT066).
文摘This work managed the extrusion strain path by designing various extrusion die cavities,successfully realizing the texture modification for the ZK60 magnesium alloy.The mechanisms involving the texture dependence on the extrusion die cavity as well as their effects on the mechanical properties were emphatically investigated.Results showed that dynamic recrystallization refined the grain size and improved the microstructure homogeneity in the three extrusion specimens,but did not produce too large microstructure differences.By comparison,significant texture differences developed owing to the various extrusion die cavities,which here were mainly reflected in the strong or weak texture components for the c-axes//TD and the c-axes//ND.Such texture differences started from the deformation texture instead of the recrystallization texture whose roles only consisted in dispersing the texture component and reducing the texture intensity.The results from the finite element analysis and the visco-plastic self-consistent model indicated that,in order to accommodate the different strain components induced by the extrusion die cavities,slip systems or tension twinning were activated differently,and this was the critical reason causing the above texture differences.One modified Hall-Petch relationship was adopted to analyze the conjoint effects of grain refinement and texture variation on the yield stress.Additionally,the quantitative results about deformation mechanism activation fractions demonstrated that the texture variations influenced the competition relationships between the twinning induced deformation and the slip dominant deformation,and the former generally produced the lower yield stress and the increasing stage of strain hardening rate,while the latter produced the higher yield stress and the continuous decline of strain hardening rate.
基金supported by National Natural Science Foundation of China(52201111,52201137,52275389)Taiyuan University of Science and Technology Scientific Research Initial Funding(20232102)+1 种基金Reward funds for excellent doctor of work in coming to Shanxi(No.20242068)Special fund for Scienceand Technology Innovation Teamsof ShanxiProvince.
文摘Obtaining high strength in low-RE-alloyed Mg alloys(RE<6 wt%)remains a huge challenge so far.In this work,we fabricated a novel high-strength and low-RE-alloyed Mg-3Yb-0.6Zn-0.4Zr(wt%)alloy using the conventional extrusion at low temperature,which breaks through the stereotypical"fewer RE,lower strength"wisdom.The microstructure of the alloy and mechanical properties were examined with op-tical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and Instron testing machine.This alloy exhibits a high tensile yield strength of 410 MPa and a favorable elongation of 7.8%,outperforming the majority of traditional high-strength Mg-Gd-Y(-Zn)-Zr extrusion alloys with high RE additions,at least 12 wt%.The high yield strength of the alloy is closely associated with the synergistic effect of submicron recrystallized grains and highly-textural hot-worked grains containing numerous dynamic precipitates and residual dislocations,rather than the widely-considered age-hardening in those heavy RE containing Mg alloys.This work provides an important reference for the development of high-performance extruded Mg alloys with low RE solutes.
基金supported by International Partnership Program of the Chinese Academy of Sciences(Grant No.310GJH2024010GC)National Natural Science Foundation of China(Grant No.52005479)the China Building Materials Federation(Grant No.2023JBGS0401)。
文摘The utilization of lunar regolith for construction on the lunar surface presents a critical challenge in-situ resource utilization.This study proposes a lunar regolith manufacturing method that uses a high-performance resin binder characterized by a high regolith content and strong forming capabilities.A combined resin material with both thermosetting and photosetting properties was developed and mixed with lunar regolith to create a slurry.This slurry can be directly molded or additively extruded into green bodies with specific structures.These green bodies can self-cure under the high temperatures and ultraviolet radiation experienced during the lunar day,reducing energy consumption and fulfilling the requirements of lunar construction.The material-forming processes and effects of various additive types and concentrations,regolith mass ratios,and processing parameters on the properties of the slurry and the formed specimens were thoroughly investigated.The mechanical performance and microstructure of the fabricated samples were analyzed.The lunar regolith mass ratio reached 90 wt%(approximately 79 vol%),with the highest compressive strengths exceeding 60 MPa for cast specimens and 30 MPa for printed samples.This technology shows significant potential for enabling in-situ lunar regolith-based construction in future lunar missions.
基金supported by the National Natural Science Foundation of China(No.51904036)the Hunan Provincial Key Research and Development Program,China(No.2023GK2049)+2 种基金Changsha Municipal Natural Science Foundation,China(Nos.kq2402016,kq2402014)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX20240772)the Sichuan Science and Technology Program,China(No.2024NSFSC0151)。
文摘The microstructure and mechanical properties of Mg−4.5Al−2.5Zn−0.3Mn−0.2Ca(wt.%,designated as AZ42)alloys in extruded(at extrusion ratios of 28,20 and 11.5)and peak-aged states were investigated,by using optical microscopy,scanning electron microscopy,energy dispersive spectrometry and electron backscatter diffraction.The results show that extrusion produces a typical basal fiber texture and streamlines of second phases.All samples exhibit the lowest Schmid factor of basal slip(SFb)and the superior tensile yield strength(TYS)along extrusion direction(ED).The sample with extrusion ratio of 20 exhibits the largest average grain size,but the smallest SFb which compensates for the disadvantage of grain coarsening and maintains the strength.After being peak-aged at 175℃for 48 h,the sample with the extrusion ratio of 20 shows the optimal TYS along all the directions,compared to the other samples.This hopes to provide useful information for optimizing the deformation parameters of the AZ42 alloys.
文摘In the current study the wear behavior of the ZK60/SiC composites reinforced by particles and whiskers in both as-cast and extruded conditions was examined.Furthermore,the wear behavior of the extruded samples along the extrusion direction and perpendicular to the extrusion direction was studied.The wear tests were performed at temperatures of 100,200,and 300℃under loads of 10,20,and 30 N.The results showed that the whisker-reinforced sample(5.8×10^(–4)g/[N.m])had higher wear resistance than the particle-reinforced sample(1.3×10^(–3)g/[N.m]).The lowest wear rate was observed for the extruded sample in the extrusion direction(3.53×10^(–4)g/[N.m]).It was also found that the wear rate increased by∼20%with increasing temperature,but in the ZK60/SiC_(w)sample,dynamic precipitation increased the wear resistance.The coefficient of friction was also found to increase with rising temperature,showing an increase of approximately 12.5%at a 10 N load and 20%at a 30 N load.Examination of the worn surfaces by scanning electron microscopy showed that the as-cast ZK60 alloy at 100℃had the oxidative-abrasive as the dominant mechanism.It was found that by extruding the sample,the strength of the sample increased and the mechanism changed to adhesive wear.In the ZK60/SiC_(p)composite,the viscoplastic wear mechanism was dominant.Although in the extruded sample the dominant mechanism changed to plastic deformation.As temperature increases,the viscoplastic wear mechanism became dominant again.In the as-cast ZK60/SiC_(w)composite,the abrasive wear mechanism changed to delamination with increasing temperature.By extruding the sample,the dominant mechanism changed to adhesive wear.Finally,dynamic precipitation induced by temperature caused an increase in the wear resistance.
基金the financial support from Basic Research Projects of Higher Education Institutions of Liaoning Province(Key Research Projects)(No.JYTZD2023108)General Project of Liaoning Provincial Department of Education(Nos.LJKMZ20220462 and JYTMS20231199).
文摘Through the innovative integration of semi-solid rheo-casting with extrusion shear process,the short-process fabrication of low-alloyed wrought Mg-2Zn-1Mn alloy is achieved in this study.Uniaxial tensile testing of low-temperature extrusion shear specimens(200℃)demonstrates the exceptional strength-ductility synergy,yield strength of 277 MPa,yield strength ratio of 0.95,and elongation of 24%.Microstructural observations reveal the mechanisms underlying its high strength-plasticity synergy at room temperature.This study investigates the effects of different temperature gradients on the microstructure by analyzing experiments conducted at three temperatures:300℃,250℃,and 200◦C.Ultimately,the formation mechanism of the bimodal microstructure obtained at 200℃ is elucidated.The distinctive crystallographic texture oriented at 34°relative to the loading axis direction effectively mitigates stress concentration by inducing the synergistic activation of multiple slip systems.Furthermore,the transition trends of different slip systems and texture evolution during tensile deformation are validated through Visco-Plastic Self-Consistent(VPSC)simulations and corroborated by microstructural analysis.With geometrically necessary dislocation(GND)density(4.28×10^(15)m^(-2))and pyramidal slip activation(~45%).This study has successfully broken through the bottleneck of strength-ductility trade-off in magnesium alloys,providing theoretical support for the development of high-reliability magnesium alloys.
基金supported by the National Natural Science Foundation of China(No.52205393)the Natural Science Foundation of Shandong Province,China(No.ZR2022QE263)+1 种基金the Science and Technology Commission of Shanghai Municipality,Shanghai Rising-Star Program,China(No.23YF1413900)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission,China(Nos.21010500800,23010501100).
文摘The microstructure and texture evolutions during extrusion and rolling processes of the 2195 Al−Li alloy were investigated.The EBSD technique was employed to reveal the microscopic evolution mechanisms of different texture components.The findings reveal that the texture evolution is governed by two mechanisms:an overall orientation transformation induced by plastic strain and a localized transformation occurring at the shearing bands within grains.During the rolling process,the extrusion texture components of Ex{123}<111>and Cu{112}<111>evolve into S{123}<634>,and the Bs{011}<211>rotates into the orientations near R-Bs and S.With increasing deformation,the S,Bs,and R-Bs orientations further rotate around the TD axis and disperse into new orientations,forming recrystallized grains.The shearing bands with different initial orientations exhibit similar orientation evolution patterns,all of which evolve from the initial orientation to a series of recrystallization orientations.
基金the financial support from the National Natural Science Foundation of China(No.12164004)the Jiangxi Provincial Natural Science Foundation(Nos.20242BAB25210,20232BCJ25067,20232BAB214004 and 20224BAB204029)+2 种基金the Foundation of Education Department of Jiangxi Provincial(Nos.GJJ2201247 and GJJ211436)the Young and Middle-aged Teachers Education Scientific Research Project of Fujian Province(No.JAT231008)supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd(SIMR).
文摘Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy was systematically investigated.With the increase of extrusion rate,the average recrystallized grain size of Mg-1.2Y-1.2Ni alloy and mean particle diameter of Mg2Ni phase were increased,while the density of geometrically necessary dislocation and the intensity of the basal texture were decreased.When extrusion rate increases from 1 to 6 mm/s,the tensile yield strength(TYS)of asextruded Mg-1.2Y-1.2Ni alloy decreases from 501 to 281 MPa,while the elongation to failure increases from 1.5%to 6.2%.The Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s obtained TYS of 421 MPa,the ultimate tensile strength(UTS)of 440 MPa and elongation to failure of 2.6%,respectively,exhibiting comprehensive mechanical properties with relatively good plasticity and ultrahigh strength.The ultrahigh TYS of 501 and 421 MPa was mainly due to the strengthening from ultrafine recrystallized grains,high volume fraction long period stacking ordered(LPSO)phases and high density dislocations.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB3706801)the National Natural Science Foundation of China (Grant Nos.U2341253,52371019,U2241232)+2 种基金the Dalian High-level Talents Innovation Support Program (Grant No.2021RD06)the Applied Basic Research Program of Liaoning Province (Grant No.2022JH2/101300003)the Natural Science Foundation of Liaoning Province (Grant Nos.2022-BS-262,JYTMS20230031)。
文摘Based on thermodynamic calculations and continuous rheological extrusion(CRE)technology,Al-Ti-V-B master alloys were designed and prepared.The morphology and the distribution of the refined phases in the master alloys were analyzed by XRD,SEM,and TEM.The effects of master alloy addition and holding time on the microstructure and mechanical properties of A356 alloy were investigated.Under the optimum refiner addition of 0.3wt.%and the holding time of 20 min,the average grain size of the refined A356 alloy is 151.8±9.11μm,89.62%lower than that of original A356 alloy.The tensile strength and elongation of as-cast A356refined alloy are 196.11 MPa and 5.75%,respectively.After T6 treatment,the tensile strength and elongation of A356 refined alloy are 290.1 MPa and 3.09%,respectively.The fracture morphology is characterized by a predominance of along-crystal fracture with a small amount of through-crystal fracture,attributed to the refined grains.Finer grains promote crack path deflection and localized plastic deformation,enhancing energy dissipation and reducing the tendency for brittle fracture.This study provides a novel approach to improving the mechanical properties of A356 alloy through grain refinement using CRE Al-Ti-V-B master alloy.
基金supported by the National Key Research and Development Program of China(No.2021YFB3701100)the Applied Basic Research Program Project of Liaoning Province,China(No.2023020253-JH2/1016)the Key Research and Development Plan of Shanxi Province,China(No.202102050201005).
文摘The effect of extrusion temperature on the dynamic recrystallization behavior and mechanical properties of the flame-retardant Mg−6Al−3Ca−1Zn−1Sn−Mn(wt.%)alloy was investigated.The observed dynamic recrystallization mechanisms in the alloy include continuous dynamic recrystallization(CDRX)and particle simulated nucleation(PSN)during hot extrusion.A significant increase in yield strength,from 218 to 358 MPa,representing a 140 MPa increase,is achieved by decreasing the extrusion temperature.The strengthening mechanisms were analyzed quantitatively,with the enhanced strength primarily attributed to grain boundary and dislocation strengthening.The plasticity mechanism was analyzed qualitatively,and the increase in the volume fraction of unDRXed grains caused by the decrease in extrusion temperature leads to an increase in the number of{1012}tensile twins during the tensile deformation,resulting in a reduction in plasticity.
基金supported by the National Key R&D Program of China(No.2021YFB3701100)。
文摘The effects of trace Ag on the tensile strength and creep resistance of Mg-7.5Gd-1.5Y-0.4Zr(wt.%)extrusion bars were investigated at temperatures of 175-275℃,via tensile tests and creep tests,electron back-scatter diffraction,and transmission electron microscopy.Adding trace Ag improves the tensile strength and creep resistance of Mg-Gd-Y-Zr alloys at elevated temperatures.During the creep process,precipitate-free zones(PFZs)are formed near grain boundaries and perpendicular to the loading direction,while chain-likeβ′-Mg7RE precipitates are distributed in a special direction([1010])in grain interior.After adding Ag element,the creep resistance of the Mg-Gd-Y-Zr-Ag is improved due to the suppression of dislocation movement by the synergistic effect of narrower PFZs,finerβ′-Mg7RE precipitates in the grain interior and more stable β-Mg_(5)RE phase located on the grain boundaries.