The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model...The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.展开更多
The shape of aluminum alloy extrudate used in high-speed train is complex, structural noises from the surfaces of the extrudate will be received when using ultrasonic phased array to detect the flaws in FSW. To solve ...The shape of aluminum alloy extrudate used in high-speed train is complex, structural noises from the surfaces of the extrudate will be received when using ultrasonic phased array to detect the flaws in FSW. To solve this problem, ultrasonic phased array acoustic field model and propagation simulation of acoustic waves were introduced to simulate the acoustic pressure distribution and the propagation of the acoustic waves. With the methods above, the detection parameters can be optimized and as a result, the experimental process can be simplified and the detection efficiency can be improved. Meanwhile, the echoes in the S-scan images can be predicted, which can help analyze the detection results and judge the defects.展开更多
The numerical investigation on extrudate swell through capillary die forviscoelastic fluid characteried by integral-type Maxwell constitutive equation was conducted byemploying the finite element method with the calcu...The numerical investigation on extrudate swell through capillary die forviscoelastic fluid characteried by integral-type Maxwell constitutive equation was conducted byemploying the finite element method with the calculation of viscoelastic extra stress in theconventional finite element. The method of avoiding singularity was also adopted by integrating thestrain history of the Gauss points for each element near the wall and the free surface. Theconvergence solutions at high Weissenberg number can be obtained by using the appropriate methods toreduce errors and improve the speed of convergence of the calculation, which include adding arelaxation factor of velocity in iteration process, or enlarging the reference viscosity, orreducing the elapsed time. The highest Weissenberg number obtained here is up to 3. 8, while thesolution at the Weissenberg number of 3. 75 was given in the previous work with similar extrudateswell ratio and the exit pressure drop by using differential Maxwell model with Elastic-ViscousStress Split (EVSS) combined with Streamline Upwind Petrov-Galerkin (SUPG) scheme. The calculationsindicated that the method of dealing with integral consti- tutive equation introduced in this paperis suitable in simulating viscoelastic flow characterized by integral constitutive equation at highe-lastic level.展开更多
The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained ...The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained fine dynamic recrystallization(DRX)grains(FG)and coarse un DRX grains(CG).The difference in deformability between CG and FG leads to the formation of heterogeneous grain structure.The average grain size and basal texture intensities increased while the volume fraction of CG decreased with increasing extrusion ratio.Tensile testing results indicated that the extruded 17E230 alloy exhibited higher tensile strengths than 9E230 alloy,whose tensile yield strength(σ_(0.2)),ultimate tensile strengths(σ_(b)),and elongation to failure(ε_(f))were 231.1 MPa,319.5MPa,and 12.54%respectively.The high tensile strengths of the extruded alloy mainly originated from grain refinement,texture strengthening,precipitation strengthening from a great number of nano-scale Mg_(2)Sn phases,solid solution strengthening and hetero-deformation induced(HDI)strengthening,while the good ductility of the alloy was also mainly attributed to grain refinement,activation of the non-basal slip systems and HDI hardening.展开更多
The problem of a creeping flow of Newtonian fluid extruded from a plane slit or a circular pipe.in the absence of gravity,is simulated successfully by using the continuous-pressure-element method,the discontinuous-pre...The problem of a creeping flow of Newtonian fluid extruded from a plane slit or a circular pipe.in the absence of gravity,is simulated successfully by using the continuous-pressure-element method,the discontinuous-pressure-element method,the consistant penalty method,the reduced integration penalty method and the modified reduced integration penalty method proposed by Oden.Through comparisons between these methods,it is convinced that the discontinuous-pressure interpolation schemes result in more accurate mass conservation and,consequently,more rapid convergence of the free-surface iteration than the continuous one does.The reduced integration penalty method can further reduce the cost of computation while retaining sufficient accuracy of the solution.展开更多
The effects of the co-addition of Ni and Zn on the microstructure and mechanical properties of the extruded Mg-6.84Y2.45Cu(MYC,wt%)alloy were researched.Results show that the as-cast Mg-6.79Y-1.21Cu-1.12Ni-1.25Zn(MYCN...The effects of the co-addition of Ni and Zn on the microstructure and mechanical properties of the extruded Mg-6.84Y2.45Cu(MYC,wt%)alloy were researched.Results show that the as-cast Mg-6.79Y-1.21Cu-1.12Ni-1.25Zn(MYCNZ,wt%)alloy consists of theα-Mg,a few Y-rich phases,lamellar 18R-long period stacking ordered(LPSO)phase,and granular Mg_(2)(Cu,Ni,Zn)phase.After the homogenization process,phase transformation occurs in MYCNZ alloy.Some 18R-LPSO phases at the grain boundary are transformed into the thin striped 14H-LPSO phase in the grains.After extrusion,the amount,morphology,and distribution of the second phase are changed,and the grain size of the extruded MYCNZ alloy is significantly reduced to approximately 2.62µm.Additionally,a weaker basal texture is formed in the extruded MYCNZ alloy.The tensile results indicate that the co-addition of Ni and Zn significantly enhances the tensile strength of the extruded MYC alloy while maintaining good ductility.The tensile yield strength(σ_(0.2)),ultimate tensile strength(σ_(b)),and elongation to failure(ε_(L))of the extruded MYCNZ alloy are 266.9 MPa,299.8 MPa,and 20.1%,respectively.This alloy has a good strength-plastic synergistic effect.The excellent tensile strength of the extruded MYCNZ alloy at room temperature is mainly due to grain refinement and the second phase strengthening effect,and its outstanding ductility is ascribed to the texture weakening and activation of non-basal slips.展开更多
In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referr...In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referred to as M1 and M2 samples,respectively).The creep tests were performed on these samples at the temperature range of 150-200℃,and the stress level range of 50-100 MPa.The creep properties and fracture behavior of AZ31 extruded sheets with mixed-grain microstructures were studied.Results showed that the creep properties of the M2 sample always outperformed that of the M1 sample and M1 and M2 samples’creep was dominated by dislocation movement.The creep rate of M2 samples(1.5×10^(-7)±1.1×10^(-10) s^(-1))is an order of magnitude lower than that of M1 samples(4.8×10^(-6)±8.1×10^(-10) s^(-1))at 200℃under 50 MPa The high activity of basal slip and softening mechanism in the M1 sample significantly accelerated creep,resulting in a relatively high creep rate.Moreover,the stress concentration within the M1 sample caused by deformation incompatibility,increased the initiation and propagation of voids,ultimately leading to fracture and poorer creep performance.However,the numerous<10µm fine grains surrounding deformed coarse grains in the M2 sample facilitated better coordination of deformation through dislocation slip,effectively slowing down the initiation of voids during the creep process.Meanwhile,the strain was uniformly distributed within each grain,mitigating stress concentration,inhibiting voids propagation,and contributing to the superior creep resistance of the M2 sample.展开更多
This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by addi...This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by adding small amounts of Ca and Y(each<1 wt%)into commercial Mg–Al based alloys,resulting in exceptional ignition and corrosion resistances and impressive mechanical properties.Their main advantages of SEN alloys are as follows.(1)A dense multi-oxide layer of SEN alloys comprising MgO,CaO,and Y_(2)O_(3) impedes the outward dispersion of Mg vapor and the inward penetration of O_(2) during oxidation,thereby enhancing the oxidation and ignition resistances.(2)The presence of Ca-and Y-based second-phase particles in SEN alloys can enhance their corrosion resistance because Ca-containing particles prevent the spread of corrosion,and the replacement of Al-containing particles with less noble ones containing Y(e.g.,Al–Mn–Y or Al–Y particles)retards corrosion.(3)The addition of minor amounts of Ca and Y renders excellent mechanical properties due to improved strengthening effects.These enhanced properties are attributed to more pronounced dynamic recrystallization and grain refining behaviors caused by the second-phase particles during extrusion.(4)Despite the presence of various types of second-phase particles,the fatigue properties of SEN9 alloys are similar to those of commercial AZ91 alloys.(5)Simultaneous introduction of Ca and Y suppresses the formation of Mg17Al12 discontinuous precipitates during aging,leading to the enhanced elongation of aged SEN alloys.(6)Adding mischmetal into the SEN9 alloy leads to a six-fold enhancement in extrudability.Consequently,the studies conducted on SEN alloys demonstrate their excellent ignition and corrosion resistances and mechanical properties,which broaden the industrial applications of Mg alloys by addressing their inherent weaknesses.展开更多
Extruded rice has increasingly gained popularity in the market due to its convenience and acceptable texture.The objective of this study was to understand how the physicochemical,thermal,and textural properties of the...Extruded rice has increasingly gained popularity in the market due to its convenience and acceptable texture.The objective of this study was to understand how the physicochemical,thermal,and textural properties of the extruded rice affected its cooking properties and texture of the cooked one.It was found that air trapped in the grains during extrusion reduced the transparency of extruded rice.More air trapped in the grains reduced the true density of the extruded rice,which in turn decreased the hardness of extruded rice.A looser internal structure of extruded rice grain,as indicated by the lower true density,resulted in a faster hydration and shorter optimum cooking time.Extruded rices showed two thermal-transition peaks,with peak 1 from 93.3℃ to 112.8℃ and peak 2 from 107.5℃ to 132.5℃.The increased hardness of extruded rice led to increases in its thermaltransition temperatures,longer optimum steaming time,and decreases in its water absorption and cooking loss,which resulted in an increase in the hardness and a reduction in the adhesiveness of the steamed one.This study provides insights into the key factors determining the eating quality of extruded rice,which is beneficial for food scientists in developing premium extruded rice.展开更多
The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the fl...The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the flow domain are presented by using a fluid dynamics analysis package (Polyflow). The numerical results show that the temperatures are high in the intermeshing region and on the screw surface, the maximum pressure and the minimum pressure occur in the intermeshing region, and the flow rate is almost proportional to the screw speed.展开更多
TS-1/SiO_2 extrudate was post-treated with mixed solution of tetrapropyl ammonium hydroxide(TPAOH)and various ammonium salts solution(NH_4F,(NH_4)_3PO_4,(NH_4)_2CO_3,(NH_4)_2SO_4,NH_4CH_3CO_2,NH_4NO_3,NH_4Cl and(NH_4)...TS-1/SiO_2 extrudate was post-treated with mixed solution of tetrapropyl ammonium hydroxide(TPAOH)and various ammonium salts solution(NH_4F,(NH_4)_3PO_4,(NH_4)_2CO_3,(NH_4)_2SO_4,NH_4CH_3CO_2,NH_4NO_3,NH_4Cl and(NH_4)_2TiF_6).The obtained hierarchical TS-1 catalysts were characterized by many techniques and tested for propylene epoxidation using hydrogen peroxide as an oxidant in a fixed-bed reactor.It was shown that the physicochemical and catalytic properties of the treated TS-1/SiO_2 extrudate depended on the types of ammonium salts added.Compared to the treatment with TPAOH alone,the treatment with a mixed solution of TPAOH and some ammonium salts can greatly improve the catalytic properties of the treated TS-1/SiO_2 extrudate.Some of these ammonium salts were favorable for the incorporation of titanium in the framework,and the beneficial effect depended on the types of ammonium salt.TS-1/SiO_2 extrudate treated with a mixed solution of TPAOH and(NH_4)_3PO_4 exhibited the highest catalyst stability in propylene epoxidation.Such catalytic property can be correlated to high crystallinity,more framework titanium,large specific surface area and large external surface area.展开更多
A new continuum theory of the constitutive equation of co-rotational derivative type was developed by the author for anisotropic viscoelastic fluid-liquid crystalline (LC) polymers (S.F. Han, 2008, 2010) . This paper ...A new continuum theory of the constitutive equation of co-rotational derivative type was developed by the author for anisotropic viscoelastic fluid-liquid crystalline (LC) polymers (S.F. Han, 2008, 2010) . This paper is a continuation of the recent publication [1] to study extrusion-extensional flow of the fluid. A new concept of simple anisotropic fluid is introduced. On the basis of anisotropic simple fluid, stress behavior is described by velocity gradient tensor F and spin tensor W instead of the velocity gradient tensor D in the classic Leslie?Ericksen continuum theory. A special form of the constitutive equation of the co-rotational type is established for the fluid. Using the special form of the constitutive equation in components a computational analytical theory of the extrusion-extensional flow is developed for the LC polymer liquids - anisotropic viscoelastic fluid. Application of the constitutive theory to the flow is successful in predicting bifurcation of elongational viscosity and contraction of extrudate for LC polymer liquids–anisotropic viscoelastic fluid. The contraction of extrudate of LC polymer liquids may be associated with the stored elastic energy conversion into that necessary for bifurcation of elongational viscosity in extrusion extensional flow of the fluid.展开更多
AIM:To investigate glue extrusion after endoscopic N-butyl-2-cyanoacrylate injection on gastric variceal bleeding and to evaluate the long-term efficacy and safety of this therapy.METHODS:A total of 148 cirrhotic pati...AIM:To investigate glue extrusion after endoscopic N-butyl-2-cyanoacrylate injection on gastric variceal bleeding and to evaluate the long-term efficacy and safety of this therapy.METHODS:A total of 148 cirrhotic patients in our hospital with esophagogastric variceal bleeding(EGVB) were included in this study.N-butyl-2-cyanoacrylate was mixed with lipiodol in a 1:1 ratio and injected as a bolus of 1-3 mL according to variceal size.Patients underwent endoscopic follow-up the next week,fourth week,second month,fourth month,and seventh month after injection and then every 6 mo to determine the cast shape.An abdominal X-ray fi lm and ultrasound or computed tomographic scan were also carried out in order to evaluate the time of variceal disappearance and complete extrusion of the cast.The average follow-up time was 13.1 mo.RESULTS:The instantaneous hemostatic rate was 96.2%.Early re-bleeding after injection in 9 cases(6.2%) was estimated from rejection of adhesive.Late re-bleeding occurred in 12 patients(8.1%) at 2-18 mo.The glue cast was extruded into the lumen within one month in 86.1% of patients and eliminated within one year.Light erosion was seen at the injection position and mucosa edema in the second week.The glue casts were extruded in 18 patients(12.1%) after one week and in 64 patients(42.8%) after two weeks.All kinds of glue clumping shapes and colors on endoscopic examination were observed in 127 patients(86.1%) within one month,including punctiform,globular,pillar and variform.Forty one patients(27.9%) had glue extrusion after 3 mo and 28 patients(28.9%) after six months.The extrusion time was not related to the injection volume of histoacryl.Obliteration was seen in 70.2%(104 cases) endoscopically.The main complication was re-bleeding resulting from extrusion.The prognosis of the patients depended on the severity of the underlying liver disease.CONCLUSION:Endoscopic injection of cyanoacrylate is highly effective for gastric varices bleeding.The glue clump shape is correlated with anatomic structure of vessels.The time of extrusion was not related to dosage of the glue.展开更多
A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking ord...A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking order(LPSO)phase,eutectic phase(Mg_(20)Cu_(4)Y_(1)),and Mg_(2)Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized alloy is remarkably refined to-3.69μm and the second phase is significantly broken and distributed in the extrusion direction.Tensile testing curves of the extrude alloy at room temperature indicate that the yield strength and ultimate tensile strength increase while the elongation of the alloy decreases with increasing strain rate.Interestingly,a yield plateau fo rms and gradually decreases with increasing strain rate.The yield phenomenon is related to the dislocation multiplication and the interaction between the movable dislocations and solute atoms.展开更多
The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corro...The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055.展开更多
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or...The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or Ce/La addition,the Ca-Ce/La cooperative microalloying results in an outstanding grain refinement,because the fine secondary phase particles effectively hinder the recrystallized grain growth.The coarse Ca2Mg6Zn3 phases promote the formation of Ca3(PO4)2 or hydroxyapatite particles during the immersion process and accelerate the dissolution of the corrosion product film,which destroys its integrity and results in the deterioration of anti-corrosive performance.The Ce/La elements can be dispersed within the conventional Mg7Zn3 phases,which reduce the internal galvanic corrosion between Mg matrix and the secondary phases,leading to an obvious improvement of corrosion resistance.Therefore,the Ca-Ce/La cooperative microalloying achieves a homogenous fine-grained microstructure and improves the protective ability of surface film,which will pave a new avenue for the design of biomedical Mg alloys in the coming future.展开更多
Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannarnei. In the control diet (Diet 1), FM protein was replaced with inc...Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannarnei. In the control diet (Diet 1), FM protein was replaced with increasing dietary levels of ESBM (4.28%, 8.40%, 12.62%, 16.82%, and 25.26%) at 10%, 20%, 30%, 40%, and 60% levels (Diets 2 to 6, respectively). An eight-week feeding trial was conducted on 720 juvenile shrimp (0.67 g ± 0.01 g mean initial Weight), and nutrient digestibility of the six diets was determined. ESBM could replace 20% of FM without causing a significant reduction in growth of shrimp, but other dietary treatments strongly affected whole body composition. Crude protein content of the whole body fed Diet 6 was significantly lower than that fed Diet 2 (P〈0.05), while crude lipid content of the whole body fed Diet 5 or 6 was significantly higher than that fed Diet 2 (P〈0,05). Protein digestibilities of Diets 5 and 6 were significantly lower than that of Diet 1 (P〈0.05). Digestibility of lipids ranged from 96.97% in Diet 6 to 98.34% in Diet 3, whereas dry matter digestibility decreased with increasing replacement level. This study indicates that 20% FM replacement with ESBM in the basic diet containing 40% protein and 30% FM is optimal for juvenile L. vannamei.展开更多
基金Supported by the National Science Foundation for Distinguished Young Scholars of China(50425517) the Shandong Province Natural Science Foundation(Y2007F59)
文摘The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51175113 ).
文摘The shape of aluminum alloy extrudate used in high-speed train is complex, structural noises from the surfaces of the extrudate will be received when using ultrasonic phased array to detect the flaws in FSW. To solve this problem, ultrasonic phased array acoustic field model and propagation simulation of acoustic waves were introduced to simulate the acoustic pressure distribution and the propagation of the acoustic waves. With the methods above, the detection parameters can be optimized and as a result, the experimental process can be simplified and the detection efficiency can be improved. Meanwhile, the echoes in the S-scan images can be predicted, which can help analyze the detection results and judge the defects.
文摘The numerical investigation on extrudate swell through capillary die forviscoelastic fluid characteried by integral-type Maxwell constitutive equation was conducted byemploying the finite element method with the calculation of viscoelastic extra stress in theconventional finite element. The method of avoiding singularity was also adopted by integrating thestrain history of the Gauss points for each element near the wall and the free surface. Theconvergence solutions at high Weissenberg number can be obtained by using the appropriate methods toreduce errors and improve the speed of convergence of the calculation, which include adding arelaxation factor of velocity in iteration process, or enlarging the reference viscosity, orreducing the elapsed time. The highest Weissenberg number obtained here is up to 3. 8, while thesolution at the Weissenberg number of 3. 75 was given in the previous work with similar extrudateswell ratio and the exit pressure drop by using differential Maxwell model with Elastic-ViscousStress Split (EVSS) combined with Streamline Upwind Petrov-Galerkin (SUPG) scheme. The calculationsindicated that the method of dealing with integral consti- tutive equation introduced in this paperis suitable in simulating viscoelastic flow characterized by integral constitutive equation at highe-lastic level.
基金supported by the Major Science and Technology Project of Gansu Province(Grant No.22ZD6GA008)the National Natural Science Foundation of China(Nos.52261027,52001152 and 51961021)+2 种基金the Open Project of State Key Laboratory for Mechanical Behavior of Materials(20192102)Undergraduate Innovation and Entrepreneurship Training Program(Nos.DC20231482,DC20231188 and DC20231558)Gansu Provincial Excellent Graduate Students“Innovation Star”Program(2022CXZX-394)。
文摘The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained fine dynamic recrystallization(DRX)grains(FG)and coarse un DRX grains(CG).The difference in deformability between CG and FG leads to the formation of heterogeneous grain structure.The average grain size and basal texture intensities increased while the volume fraction of CG decreased with increasing extrusion ratio.Tensile testing results indicated that the extruded 17E230 alloy exhibited higher tensile strengths than 9E230 alloy,whose tensile yield strength(σ_(0.2)),ultimate tensile strengths(σ_(b)),and elongation to failure(ε_(f))were 231.1 MPa,319.5MPa,and 12.54%respectively.The high tensile strengths of the extruded alloy mainly originated from grain refinement,texture strengthening,precipitation strengthening from a great number of nano-scale Mg_(2)Sn phases,solid solution strengthening and hetero-deformation induced(HDI)strengthening,while the good ductility of the alloy was also mainly attributed to grain refinement,activation of the non-basal slip systems and HDI hardening.
文摘The problem of a creeping flow of Newtonian fluid extruded from a plane slit or a circular pipe.in the absence of gravity,is simulated successfully by using the continuous-pressure-element method,the discontinuous-pressure-element method,the consistant penalty method,the reduced integration penalty method and the modified reduced integration penalty method proposed by Oden.Through comparisons between these methods,it is convinced that the discontinuous-pressure interpolation schemes result in more accurate mass conservation and,consequently,more rapid convergence of the free-surface iteration than the continuous one does.The reduced integration penalty method can further reduce the cost of computation while retaining sufficient accuracy of the solution.
基金Major Science and Technology Project of Gansu Province(22ZD6GA008)National Natural Science Foundation of China(52261027,51961021,52001152)+2 种基金Open Project of State Key Laboratory for Mechanical Behavior of Materials(20192102)Undergraduate Innovation and Entrepreneurship Training Program(DC20231188,DC20231482,DC20231558,DC20231469,DC20231441)Supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd(SIMR)。
文摘The effects of the co-addition of Ni and Zn on the microstructure and mechanical properties of the extruded Mg-6.84Y2.45Cu(MYC,wt%)alloy were researched.Results show that the as-cast Mg-6.79Y-1.21Cu-1.12Ni-1.25Zn(MYCNZ,wt%)alloy consists of theα-Mg,a few Y-rich phases,lamellar 18R-long period stacking ordered(LPSO)phase,and granular Mg_(2)(Cu,Ni,Zn)phase.After the homogenization process,phase transformation occurs in MYCNZ alloy.Some 18R-LPSO phases at the grain boundary are transformed into the thin striped 14H-LPSO phase in the grains.After extrusion,the amount,morphology,and distribution of the second phase are changed,and the grain size of the extruded MYCNZ alloy is significantly reduced to approximately 2.62µm.Additionally,a weaker basal texture is formed in the extruded MYCNZ alloy.The tensile results indicate that the co-addition of Ni and Zn significantly enhances the tensile strength of the extruded MYC alloy while maintaining good ductility.The tensile yield strength(σ_(0.2)),ultimate tensile strength(σ_(b)),and elongation to failure(ε_(L))of the extruded MYCNZ alloy are 266.9 MPa,299.8 MPa,and 20.1%,respectively.This alloy has a good strength-plastic synergistic effect.The excellent tensile strength of the extruded MYCNZ alloy at room temperature is mainly due to grain refinement and the second phase strengthening effect,and its outstanding ductility is ascribed to the texture weakening and activation of non-basal slips.
基金supported by the National Natural Science Foundation of China(52474419,52374395)Natural Science Foundation of Shanxi Province(20210302123135,202303021221143)+3 种基金Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi Province(202104021301022,202204021301009)Central Government Guided Local Science and Technology development projects(YDZJSX20231B003,YDZJSX2021A010)The Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)the National Research Foundation(NRF)grant funded by the Ministry of Science and ICT(2015R1A2A1A01006795)of Korea through the Research Institute of Advanced.
文摘In this work,AZ31B extruded sheets with mixed-grain microstructures were prepared through extrusion.Samples of mixed-grain microstructure with different morphologies were selected from the AZ31B extruded sheets(referred to as M1 and M2 samples,respectively).The creep tests were performed on these samples at the temperature range of 150-200℃,and the stress level range of 50-100 MPa.The creep properties and fracture behavior of AZ31 extruded sheets with mixed-grain microstructures were studied.Results showed that the creep properties of the M2 sample always outperformed that of the M1 sample and M1 and M2 samples’creep was dominated by dislocation movement.The creep rate of M2 samples(1.5×10^(-7)±1.1×10^(-10) s^(-1))is an order of magnitude lower than that of M1 samples(4.8×10^(-6)±8.1×10^(-10) s^(-1))at 200℃under 50 MPa The high activity of basal slip and softening mechanism in the M1 sample significantly accelerated creep,resulting in a relatively high creep rate.Moreover,the stress concentration within the M1 sample caused by deformation incompatibility,increased the initiation and propagation of voids,ultimately leading to fracture and poorer creep performance.However,the numerous<10µm fine grains surrounding deformed coarse grains in the M2 sample facilitated better coordination of deformation through dislocation slip,effectively slowing down the initiation of voids during the creep process.Meanwhile,the strain was uniformly distributed within each grain,mitigating stress concentration,inhibiting voids propagation,and contributing to the superior creep resistance of the M2 sample.
基金supported by the Materials and Components Technology Development Program(No.20024843)funded by the Ministry of Trade,Industry&Energy(MOTIE,South Korea)by the National Research Council of Science&Technology(NST)grant(No.CRC23011-000)funded by the Korea government(MSIT).
文摘This review article provides overall understanding of stainless,environment-friendly,and nonflammable Mg alloys(SEN alloys)recently developed at the Korea Institute of Materials Science.SEN alloys are produced by adding small amounts of Ca and Y(each<1 wt%)into commercial Mg–Al based alloys,resulting in exceptional ignition and corrosion resistances and impressive mechanical properties.Their main advantages of SEN alloys are as follows.(1)A dense multi-oxide layer of SEN alloys comprising MgO,CaO,and Y_(2)O_(3) impedes the outward dispersion of Mg vapor and the inward penetration of O_(2) during oxidation,thereby enhancing the oxidation and ignition resistances.(2)The presence of Ca-and Y-based second-phase particles in SEN alloys can enhance their corrosion resistance because Ca-containing particles prevent the spread of corrosion,and the replacement of Al-containing particles with less noble ones containing Y(e.g.,Al–Mn–Y or Al–Y particles)retards corrosion.(3)The addition of minor amounts of Ca and Y renders excellent mechanical properties due to improved strengthening effects.These enhanced properties are attributed to more pronounced dynamic recrystallization and grain refining behaviors caused by the second-phase particles during extrusion.(4)Despite the presence of various types of second-phase particles,the fatigue properties of SEN9 alloys are similar to those of commercial AZ91 alloys.(5)Simultaneous introduction of Ca and Y suppresses the formation of Mg17Al12 discontinuous precipitates during aging,leading to the enhanced elongation of aged SEN alloys.(6)Adding mischmetal into the SEN9 alloy leads to a six-fold enhancement in extrudability.Consequently,the studies conducted on SEN alloys demonstrate their excellent ignition and corrosion resistances and mechanical properties,which broaden the industrial applications of Mg alloys by addressing their inherent weaknesses.
基金supported by the Key Science and Technology Project of Henan (211110110600)the Major Science and Technology Project of Henan (221100110700 and 231100110300)+1 种基金the High-Level Talent Research Start-up Fund Project of Henan University of Technology (2022BS039)the Natural Science Foundation of Henan (222300420423).
文摘Extruded rice has increasingly gained popularity in the market due to its convenience and acceptable texture.The objective of this study was to understand how the physicochemical,thermal,and textural properties of the extruded rice affected its cooking properties and texture of the cooked one.It was found that air trapped in the grains during extrusion reduced the transparency of extruded rice.More air trapped in the grains reduced the true density of the extruded rice,which in turn decreased the hardness of extruded rice.A looser internal structure of extruded rice grain,as indicated by the lower true density,resulted in a faster hydration and shorter optimum cooking time.Extruded rices showed two thermal-transition peaks,with peak 1 from 93.3℃ to 112.8℃ and peak 2 from 107.5℃ to 132.5℃.The increased hardness of extruded rice led to increases in its thermaltransition temperatures,longer optimum steaming time,and decreases in its water absorption and cooking loss,which resulted in an increase in the hardness and a reduction in the adhesiveness of the steamed one.This study provides insights into the key factors determining the eating quality of extruded rice,which is beneficial for food scientists in developing premium extruded rice.
文摘The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the flow domain are presented by using a fluid dynamics analysis package (Polyflow). The numerical results show that the temperatures are high in the intermeshing region and on the screw surface, the maximum pressure and the minimum pressure occur in the intermeshing region, and the flow rate is almost proportional to the screw speed.
基金supported by National Natural Science Foundation of China (No. 21276183)
文摘TS-1/SiO_2 extrudate was post-treated with mixed solution of tetrapropyl ammonium hydroxide(TPAOH)and various ammonium salts solution(NH_4F,(NH_4)_3PO_4,(NH_4)_2CO_3,(NH_4)_2SO_4,NH_4CH_3CO_2,NH_4NO_3,NH_4Cl and(NH_4)_2TiF_6).The obtained hierarchical TS-1 catalysts were characterized by many techniques and tested for propylene epoxidation using hydrogen peroxide as an oxidant in a fixed-bed reactor.It was shown that the physicochemical and catalytic properties of the treated TS-1/SiO_2 extrudate depended on the types of ammonium salts added.Compared to the treatment with TPAOH alone,the treatment with a mixed solution of TPAOH and some ammonium salts can greatly improve the catalytic properties of the treated TS-1/SiO_2 extrudate.Some of these ammonium salts were favorable for the incorporation of titanium in the framework,and the beneficial effect depended on the types of ammonium salt.TS-1/SiO_2 extrudate treated with a mixed solution of TPAOH and(NH_4)_3PO_4 exhibited the highest catalyst stability in propylene epoxidation.Such catalytic property can be correlated to high crystallinity,more framework titanium,large specific surface area and large external surface area.
文摘A new continuum theory of the constitutive equation of co-rotational derivative type was developed by the author for anisotropic viscoelastic fluid-liquid crystalline (LC) polymers (S.F. Han, 2008, 2010) . This paper is a continuation of the recent publication [1] to study extrusion-extensional flow of the fluid. A new concept of simple anisotropic fluid is introduced. On the basis of anisotropic simple fluid, stress behavior is described by velocity gradient tensor F and spin tensor W instead of the velocity gradient tensor D in the classic Leslie?Ericksen continuum theory. A special form of the constitutive equation of the co-rotational type is established for the fluid. Using the special form of the constitutive equation in components a computational analytical theory of the extrusion-extensional flow is developed for the LC polymer liquids - anisotropic viscoelastic fluid. Application of the constitutive theory to the flow is successful in predicting bifurcation of elongational viscosity and contraction of extrudate for LC polymer liquids–anisotropic viscoelastic fluid. The contraction of extrudate of LC polymer liquids may be associated with the stored elastic energy conversion into that necessary for bifurcation of elongational viscosity in extrusion extensional flow of the fluid.
文摘AIM:To investigate glue extrusion after endoscopic N-butyl-2-cyanoacrylate injection on gastric variceal bleeding and to evaluate the long-term efficacy and safety of this therapy.METHODS:A total of 148 cirrhotic patients in our hospital with esophagogastric variceal bleeding(EGVB) were included in this study.N-butyl-2-cyanoacrylate was mixed with lipiodol in a 1:1 ratio and injected as a bolus of 1-3 mL according to variceal size.Patients underwent endoscopic follow-up the next week,fourth week,second month,fourth month,and seventh month after injection and then every 6 mo to determine the cast shape.An abdominal X-ray fi lm and ultrasound or computed tomographic scan were also carried out in order to evaluate the time of variceal disappearance and complete extrusion of the cast.The average follow-up time was 13.1 mo.RESULTS:The instantaneous hemostatic rate was 96.2%.Early re-bleeding after injection in 9 cases(6.2%) was estimated from rejection of adhesive.Late re-bleeding occurred in 12 patients(8.1%) at 2-18 mo.The glue cast was extruded into the lumen within one month in 86.1% of patients and eliminated within one year.Light erosion was seen at the injection position and mucosa edema in the second week.The glue casts were extruded in 18 patients(12.1%) after one week and in 64 patients(42.8%) after two weeks.All kinds of glue clumping shapes and colors on endoscopic examination were observed in 127 patients(86.1%) within one month,including punctiform,globular,pillar and variform.Forty one patients(27.9%) had glue extrusion after 3 mo and 28 patients(28.9%) after six months.The extrusion time was not related to the injection volume of histoacryl.Obliteration was seen in 70.2%(104 cases) endoscopically.The main complication was re-bleeding resulting from extrusion.The prognosis of the patients depended on the severity of the underlying liver disease.CONCLUSION:Endoscopic injection of cyanoacrylate is highly effective for gastric varices bleeding.The glue clump shape is correlated with anatomic structure of vessels.The time of extrusion was not related to dosage of the glue.
基金Project supported by the National Natural Science Foundation of China(51961021,52001152 and 51901174)China Postdoctoral Science Foundation(2020M673383)。
文摘A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking order(LPSO)phase,eutectic phase(Mg_(20)Cu_(4)Y_(1)),and Mg_(2)Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized alloy is remarkably refined to-3.69μm and the second phase is significantly broken and distributed in the extrusion direction.Tensile testing curves of the extrude alloy at room temperature indicate that the yield strength and ultimate tensile strength increase while the elongation of the alloy decreases with increasing strain rate.Interestingly,a yield plateau fo rms and gradually decreases with increasing strain rate.The yield phenomenon is related to the dislocation multiplication and the interaction between the movable dislocations and solute atoms.
基金the financial supports from the National Natural Science Foundation of China(No.51975330)Science Fund for Distinguished Young Scholars of Shandong Province,China(No.JQ201810)the Key Research and Development Program of Shandong Province,China(No.2019JZZY010360).
文摘The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055.
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
基金the National Natural Science Foundation(Grant nos.5177117&51671152 and 51874225)the Key Research and Development Program of Shanxi Province(Grant nos.2020KWZ-007 and 2018ZDXMGY-149)the Youth Innovation Team of Shanxi Universities and the Natural Science Foundation of Jilin Province(Grant no.20180414016GH).
文摘The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or Ce/La addition,the Ca-Ce/La cooperative microalloying results in an outstanding grain refinement,because the fine secondary phase particles effectively hinder the recrystallized grain growth.The coarse Ca2Mg6Zn3 phases promote the formation of Ca3(PO4)2 or hydroxyapatite particles during the immersion process and accelerate the dissolution of the corrosion product film,which destroys its integrity and results in the deterioration of anti-corrosive performance.The Ce/La elements can be dispersed within the conventional Mg7Zn3 phases,which reduce the internal galvanic corrosion between Mg matrix and the secondary phases,leading to an obvious improvement of corrosion resistance.Therefore,the Ca-Ce/La cooperative microalloying achieves a homogenous fine-grained microstructure and improves the protective ability of surface film,which will pave a new avenue for the design of biomedical Mg alloys in the coming future.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201003020)the Guangdong University Innovation Talents Cultivating Project of China(1009324)+1 种基金the Guangdong Natural Science Foundation of China(S2012 040007863)by the Guangdong Province Universities and College Pearl River Scholar Funded Scheme(GD UPS-2011)
文摘Extruded soybean meal (ESBM) was evaluated as a protein source for partial replacement of fish meal (FM) in diets of juvenile Litopenaeus vannarnei. In the control diet (Diet 1), FM protein was replaced with increasing dietary levels of ESBM (4.28%, 8.40%, 12.62%, 16.82%, and 25.26%) at 10%, 20%, 30%, 40%, and 60% levels (Diets 2 to 6, respectively). An eight-week feeding trial was conducted on 720 juvenile shrimp (0.67 g ± 0.01 g mean initial Weight), and nutrient digestibility of the six diets was determined. ESBM could replace 20% of FM without causing a significant reduction in growth of shrimp, but other dietary treatments strongly affected whole body composition. Crude protein content of the whole body fed Diet 6 was significantly lower than that fed Diet 2 (P〈0.05), while crude lipid content of the whole body fed Diet 5 or 6 was significantly higher than that fed Diet 2 (P〈0,05). Protein digestibilities of Diets 5 and 6 were significantly lower than that of Diet 1 (P〈0.05). Digestibility of lipids ranged from 96.97% in Diet 6 to 98.34% in Diet 3, whereas dry matter digestibility decreased with increasing replacement level. This study indicates that 20% FM replacement with ESBM in the basic diet containing 40% protein and 30% FM is optimal for juvenile L. vannamei.