This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the surviva...This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.展开更多
Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelia...Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelial cells(HPAEpiCs).Salvianolic acid A(SAA),a water-soluble polyphenol extracted from Salvia miltiorrhiza(Danshen),possesses well-documented antioxidant and anti-inflammatory activities.Nevertheless,its potential to counteract SiNP-induced inflammatory responses in the lung has not been thoroughly explored.Objective:This study aimed to evaluate the protective role and mechanistic actions of SAA against SiNP-triggered inflammation in both cellular and animal models.Methods:HPAEpiCs were pre-incubated with SAA prior to SiNP exposure to investigate changes in COX-2 expression and prostaglandin E2(PGE2)secretion.A murine model of SiNP-induced lung inflammation was used for in vivo validation.Key inflammatory signaling proteins,including c-Src,PKCα,p42/p44MAPK,and NF-κB p65,were analyzed for phosphorylation status.NF-κB promoter activity was also assessed.Pharmacological inhibitors and siRNA-mediated silencing were employed to verify the signaling cascade responsible for COX-2 regulation.Results:SAA treatment markedly suppressed SiNP-induced upregulation of COX-2 and PGE2 in bothHPAEpiCs andmouse lung tissues.SAA also reduced the activation(phosphorylation)of c-Src,PKCα,p42/p44 MAPK,and NF-κB p65,alongside diminishing NF-κB transcriptional activity.Functional studies using inhibitors and gene silencing further supported the involvement of these pathways inmediating the observed anti-inflammatory effect.Conclusion:By concurrently targeting several upstream pro-inflammatory signaling pathways,SAA demonstrates robust potential in alleviating SiNP-induced lung inflammation.These results highlight SAA as a promising candidate for therapeutic intervention in environmentally triggered respiratory conditions.展开更多
Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially...Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially among patients with poor functional outcomes.ICH is often accompanied by decreased consciousness and limb dysfunction.This seriously affects patients’ability to live independently.Although rapid advances in neurosurgery have greatly improved patient survival,there remains insufficient evidence that surgical treatment significantly improves long-term outcomes.With in-depth pathophysiological studies after ICH,increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH.In basic and clinical studies of various systemic inflammatory diseases,triggering receptor expressed on myeloid cells 1/2(TREM-1/2),and the TREM receptor family is closely related to the inflammatory response.Various inflammatory diseases can be upregulated and downregulated through receptor intervention.How the TREM receptor functions after ICH,the types of results from intervention,and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown.An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response,significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage,and thus improve the ability of patients to live independently.展开更多
Non-alcoholic fatty liver disease(NAFLD)is a progressive disease.Without effective interventions,NAFLD can gradually develop to non-alcoholic steatohepatitis,fatty liver fibrosis,liver cirrhosis and even hepatocellula...Non-alcoholic fatty liver disease(NAFLD)is a progressive disease.Without effective interventions,NAFLD can gradually develop to non-alcoholic steatohepatitis,fatty liver fibrosis,liver cirrhosis and even hepatocellular carcinoma.It is still to investigate the precise molecular mechanism behind the pathophysiology of NAFLD.Triggering receptor expressed on myeloid cells 2(TREM2)can sense tissue injury and mediate immune remodeling,thereby inducing phagocytosis,lipid metabolism,and metabolic transfer,promoting cell survival and combating inflammatory activation.NAFLD might develop as a result of TREM2's regulatory role.We here briefly summarize the biological characteristics of TREM2 and its functions in the disease progression of NAFLD.Moreover,we propose to broaden the therapeutic strategy for NAFLD by targeting TREM2.展开更多
Triggering receptor expressed on myeloid cells 2(TREM2)-mediated microglial phagocytosis is an energy-intensive process that plays a crucial role in amyloid beta(Aβ)clearance in Alzheimer’s disease(AD).Energy metabo...Triggering receptor expressed on myeloid cells 2(TREM2)-mediated microglial phagocytosis is an energy-intensive process that plays a crucial role in amyloid beta(Aβ)clearance in Alzheimer’s disease(AD).Energy metabolic reprogramming(EMR)in microglia induced by TREM2 presents therapeutic targets for cognitive impairment in AD.Jiawei Xionggui Decoction(JWXG)has demonstrated effectiveness in enhancing energy supply,protecting microglia,and mitigating cognitive impairment in APP/PS1 mice.However,the mechanism by which JWXG enhances Aβphagocytosis through TREM2-mediated EMR in microglia remains unclear.This study investigates how JWXG facilitates microglial phagocytosis and alleviates cognitive deficits in AD through TREM2-mediated EMR.Microglial phagocytosis was evaluated through immunofluorescence staining in vitro and in vivo.The EMR level of microglia was assessed using high-performance liquid chromatography(HPLC)and enzyme-linked immunosorbent assay(ELISA)kits.The TREM2/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/hypoxia-inducible factor-1α(HIF-1α)signaling pathway was analyzed using Western blotting in BV_(2) cells.TREM2^(−/−)BV_(2) cells were utilized for reverse validation experiments.The Aβburden,neuropathological features,and cognitive ability in APP/PS1 mice were evaluated using ELISA kits,immunohistochemistry(IHC),and the Morris water maze(MWM)test.JWXG enhanced both the phagocytosis of EMR disorder-BV_(2) cells(EMRD-BV_(2))and increased EMR levels.Notably,these effects were significantly reversed in TREM2^(−/−)BV_(2) cells.JWXG elevated TREM2 expression,adenosine triphosphate(ATP)levels,and microglial phagocytosis in APP/PS1 mice.Additionally,JWXG reduced Aβ-burden,neuropathological lesions,and cognitive deficits in APP/PS1 mice.In conclusion,JWXG promoted TREM2-induced EMR and enhanced microglial phagocytosis,thereby reducing Aβdeposition,improving neuropathological lesions,and alleviating cognitive deficits.展开更多
文摘This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.
基金supported by the National Science and Technology Council,Taiwan[Grant number:NSTC111-2320-B-030-013]as well as the Chang Gung University of Science Foundation,Taiwan[Grant number:ZRRPF6N0011].
文摘Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelial cells(HPAEpiCs).Salvianolic acid A(SAA),a water-soluble polyphenol extracted from Salvia miltiorrhiza(Danshen),possesses well-documented antioxidant and anti-inflammatory activities.Nevertheless,its potential to counteract SiNP-induced inflammatory responses in the lung has not been thoroughly explored.Objective:This study aimed to evaluate the protective role and mechanistic actions of SAA against SiNP-triggered inflammation in both cellular and animal models.Methods:HPAEpiCs were pre-incubated with SAA prior to SiNP exposure to investigate changes in COX-2 expression and prostaglandin E2(PGE2)secretion.A murine model of SiNP-induced lung inflammation was used for in vivo validation.Key inflammatory signaling proteins,including c-Src,PKCα,p42/p44MAPK,and NF-κB p65,were analyzed for phosphorylation status.NF-κB promoter activity was also assessed.Pharmacological inhibitors and siRNA-mediated silencing were employed to verify the signaling cascade responsible for COX-2 regulation.Results:SAA treatment markedly suppressed SiNP-induced upregulation of COX-2 and PGE2 in bothHPAEpiCs andmouse lung tissues.SAA also reduced the activation(phosphorylation)of c-Src,PKCα,p42/p44 MAPK,and NF-κB p65,alongside diminishing NF-κB transcriptional activity.Functional studies using inhibitors and gene silencing further supported the involvement of these pathways inmediating the observed anti-inflammatory effect.Conclusion:By concurrently targeting several upstream pro-inflammatory signaling pathways,SAA demonstrates robust potential in alleviating SiNP-induced lung inflammation.These results highlight SAA as a promising candidate for therapeutic intervention in environmentally triggered respiratory conditions.
基金Supported by Shanxi Provincial Key Research and Development Plan Project,No.2020ZDLSF01-02Doctor Foundation of the Second Affiliated Hospital of Xi’an Medical University,No.X2Y-R11.
文摘Intracerebral hemorrhage(ICH)is a common severe emergency in neurosurgery,causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically,especially among patients with poor functional outcomes.ICH is often accompanied by decreased consciousness and limb dysfunction.This seriously affects patients’ability to live independently.Although rapid advances in neurosurgery have greatly improved patient survival,there remains insufficient evidence that surgical treatment significantly improves long-term outcomes.With in-depth pathophysiological studies after ICH,increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH.In basic and clinical studies of various systemic inflammatory diseases,triggering receptor expressed on myeloid cells 1/2(TREM-1/2),and the TREM receptor family is closely related to the inflammatory response.Various inflammatory diseases can be upregulated and downregulated through receptor intervention.How the TREM receptor functions after ICH,the types of results from intervention,and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown.An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response,significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage,and thus improve the ability of patients to live independently.
基金Supported by Henan Province's"Double First-Class"Creation of Scientific Research in Traditional Chinese Medicine,No.HSRPDFCTCM-2023-7-23 and No.STG-ZYX02-202117National Traditional Chinese Medicine Clinical Research Base Scientific Research Special Project,No.2022JDZX098 and No.2022JDZX114+1 种基金National Natural Science Foundation of China,No.82205086The 9th China Association for Science and Technology Young Talent Support Project,No.2023QNRC001.
文摘Non-alcoholic fatty liver disease(NAFLD)is a progressive disease.Without effective interventions,NAFLD can gradually develop to non-alcoholic steatohepatitis,fatty liver fibrosis,liver cirrhosis and even hepatocellular carcinoma.It is still to investigate the precise molecular mechanism behind the pathophysiology of NAFLD.Triggering receptor expressed on myeloid cells 2(TREM2)can sense tissue injury and mediate immune remodeling,thereby inducing phagocytosis,lipid metabolism,and metabolic transfer,promoting cell survival and combating inflammatory activation.NAFLD might develop as a result of TREM2's regulatory role.We here briefly summarize the biological characteristics of TREM2 and its functions in the disease progression of NAFLD.Moreover,we propose to broaden the therapeutic strategy for NAFLD by targeting TREM2.
基金supported by the National Natural Science Foundation of China(Nos.82074150 and 82274240)the Natural Science Foundation of Sichuan Province(No.2023NSFSC1779).
文摘Triggering receptor expressed on myeloid cells 2(TREM2)-mediated microglial phagocytosis is an energy-intensive process that plays a crucial role in amyloid beta(Aβ)clearance in Alzheimer’s disease(AD).Energy metabolic reprogramming(EMR)in microglia induced by TREM2 presents therapeutic targets for cognitive impairment in AD.Jiawei Xionggui Decoction(JWXG)has demonstrated effectiveness in enhancing energy supply,protecting microglia,and mitigating cognitive impairment in APP/PS1 mice.However,the mechanism by which JWXG enhances Aβphagocytosis through TREM2-mediated EMR in microglia remains unclear.This study investigates how JWXG facilitates microglial phagocytosis and alleviates cognitive deficits in AD through TREM2-mediated EMR.Microglial phagocytosis was evaluated through immunofluorescence staining in vitro and in vivo.The EMR level of microglia was assessed using high-performance liquid chromatography(HPLC)and enzyme-linked immunosorbent assay(ELISA)kits.The TREM2/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/hypoxia-inducible factor-1α(HIF-1α)signaling pathway was analyzed using Western blotting in BV_(2) cells.TREM2^(−/−)BV_(2) cells were utilized for reverse validation experiments.The Aβburden,neuropathological features,and cognitive ability in APP/PS1 mice were evaluated using ELISA kits,immunohistochemistry(IHC),and the Morris water maze(MWM)test.JWXG enhanced both the phagocytosis of EMR disorder-BV_(2) cells(EMRD-BV_(2))and increased EMR levels.Notably,these effects were significantly reversed in TREM2^(−/−)BV_(2) cells.JWXG elevated TREM2 expression,adenosine triphosphate(ATP)levels,and microglial phagocytosis in APP/PS1 mice.Additionally,JWXG reduced Aβ-burden,neuropathological lesions,and cognitive deficits in APP/PS1 mice.In conclusion,JWXG promoted TREM2-induced EMR and enhanced microglial phagocytosis,thereby reducing Aβdeposition,improving neuropathological lesions,and alleviating cognitive deficits.