How to deal with the relations between roles and actors is the core question of the performance,and there are two opposite performance theories to this question:"Expressionism"and "Experimentalism"...How to deal with the relations between roles and actors is the core question of the performance,and there are two opposite performance theories to this question:"Expressionism"and "Experimentalism".Can these two different performance styles coexist harmoniously? The film Happy Together directed by Karwai Wong has provided a very good answer.展开更多
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr...The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extra...Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.展开更多
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C...Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.展开更多
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b...In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of v...In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z...This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ...Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.展开更多
Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and th...Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments.展开更多
Transactions of Nanjing University of Aeronautics & Astronautics(TNUAA) is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific ...Transactions of Nanjing University of Aeronautics & Astronautics(TNUAA) is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation.展开更多
Transactions of Nanjing University of Aeronautics&Astronautics(TNUAA)is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific ins...Transactions of Nanjing University of Aeronautics&Astronautics(TNUAA)is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation.展开更多
Transactions of Nanjing University of Aeronautics&Astronautics(TNUAA)is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific ins...Transactions of Nanjing University of Aeronautics&Astronautics(TNUAA)is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation.展开更多
In this work,the selected icebreaker model experiment is performed in a towing tank.We focus on the influence of seawater salinity on ship ice resistance in the ice floe field and the innovative ice model and ship mod...In this work,the selected icebreaker model experiment is performed in a towing tank.We focus on the influence of seawater salinity on ship ice resistance in the ice floe field and the innovative ice model and ship model test technology,including the similitude rule of ship model tests,test principles,and validation with full-scale ship data.A formula for calculating the relationship between the temperature and salinity of the water is constructed,which can be used to simulate the role of seawater in freshwater ice pools.On this basis,the effect of salinity on the resistance of ships sailing in broken ice fields is studied.A technique in which artificial ice made of polyethylene spheres is used to simulate ice resistance is proposed.With a series of ship model experiments in spherical and triangular ice fields,the effects of salinity and velocity on the ice resistance test of the ship model are analyzed.A relationship of the ice resistance of the ship model to the spherical ice field and the triangular ice field is proposed.The conversion results are consistent with onsite data of the full-size ship,which verifies the method of converting the test results of the ship model to the prototype.展开更多
IEEE/CAA JOURNAL OF AUTOMATICA SINICA is a joint publication of the IEEE and Chinese Association of Automation.The objective of this journal is high quality and rapid publication of articles,with a strong focus on new...IEEE/CAA JOURNAL OF AUTOMATICA SINICA is a joint publication of the IEEE and Chinese Association of Automation.The objective of this journal is high quality and rapid publication of articles,with a strong focus on new trends,original theoretical and experimental research and developments,emerging technologies,and industrial standards in automation.IEEE/CAA Journal of Automatica Sinica publishes high-quality papers in English on original theoretical and experimental research and development in all areas of automation.展开更多
The degradation characteristics of high-purity(HP)magnesium(Mg)orthopedic implants under static and cyclic compressive loads(SCL and CCL)remain inadequately understood.This study developed an in vivo loading device ca...The degradation characteristics of high-purity(HP)magnesium(Mg)orthopedic implants under static and cyclic compressive loads(SCL and CCL)remain inadequately understood.This study developed an in vivo loading device capable of applying single SCL and CCL while shielding against unpredictable host movements.In vitro degradation experiments of HP Mg implants were conducted to verify the experimental protocol,and in vivo experiments in rabbit tibiae to observe the degradation characteristics of the implants.Micro-computed tomography and scanning electron microscope were used for three-dimensional reconstruction and surface morphology analysis,respectively.Compared to in vitro specimens,in vivo specimens exhibited significantly higher corrosion rates and more extensive cracking.Cracks in the in vivo specimens gradually penetrated deeper from the loading surface,eventually leading to a rapid structural deterioration;whereas in vitro specimens exhibited more surface-localized cracking and a relatively uniform corrosion pattern.Compared to SCL,CCL accelerated both corrosion and cracking to some extent.These findings provide new insights into the in vivo degradation behavior of Mg-based implants under compressive loading conditions.展开更多
文摘How to deal with the relations between roles and actors is the core question of the performance,and there are two opposite performance theories to this question:"Expressionism"and "Experimentalism".Can these two different performance styles coexist harmoniously? The film Happy Together directed by Karwai Wong has provided a very good answer.
基金supported by the National Natural Science Foundation of China(Grant No.52035005)the Key R&D Program of Shandong Province in China(Grant No.2021ZLGX01).
文摘The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.
基金United Arab Emirates University,Grant/Award Number:12R104 and 12R121。
文摘Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
文摘Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.
基金supported by Basic and Applied Basic research foundation of Guangdong province(Nos.2021A1515010343 and 2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026 and 2022A0505050029).
文摘In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金supported by the National Natural Science Foundation of China(Nos.52372403 and U2268211)the Natural Science Foundation of Sichuan Province(No.2022NSFSC0034),China+1 种基金the National Railway Group Science and Technology Program(No.2023J071)the Traction Power State Key Laboratory of the Independent Research and Development Projects(No.2022TPL-T02),China.
文摘In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
基金supported by National Natural Science Foundation of China(Project No.51878156,received by Wen-Wei Wang) and EPC Innovation Consulting Project for Longkou Nanshan LNG Phase I Receiving Terminal(Z2000LGENT0399,received by Wen-Wei Wang and ZhaoJun Zhang).
文摘This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金Under the National Key R&D Program Key Project(No.2021YFC3201201)National Natural Science Foundation of China(No.52360032)+2 种基金Basic Scientific Research Business Fee Project of Colleges And Universities Directly Under the Inner Mongolia Autonomous Region(No.JBYYWF2022001)Development Plan of Innovation Team of Colleges And Universities in Inner Mongolia Autonomous Region(No.NMGIRT2313)the Innovation Team of‘Grassland Talents’。
文摘Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.
基金Natural Science Foundation of Hubei Province(2024AFB432)National Natural Science Foundation of China(52171045,12302436,52302095)Research Fund of Jianghan University(2023JCYJ05)。
文摘Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments.
文摘Transactions of Nanjing University of Aeronautics & Astronautics(TNUAA) is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation.
文摘Transactions of Nanjing University of Aeronautics&Astronautics(TNUAA)is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation.
文摘Transactions of Nanjing University of Aeronautics&Astronautics(TNUAA)is a bimonthly journal facing international academic community.Emphasizing prompt and effective dissemination of key data and new scientific insights,TNUAA publishes experimental and theoretical papers bearing on applications to all branches of aeronautics,astronautics and civil aviation.
基金financially supported by Jiangsu Province University(High Tech Ship)Collaborative Innovation Center(Grant No.XTCXKY20230008).
文摘In this work,the selected icebreaker model experiment is performed in a towing tank.We focus on the influence of seawater salinity on ship ice resistance in the ice floe field and the innovative ice model and ship model test technology,including the similitude rule of ship model tests,test principles,and validation with full-scale ship data.A formula for calculating the relationship between the temperature and salinity of the water is constructed,which can be used to simulate the role of seawater in freshwater ice pools.On this basis,the effect of salinity on the resistance of ships sailing in broken ice fields is studied.A technique in which artificial ice made of polyethylene spheres is used to simulate ice resistance is proposed.With a series of ship model experiments in spherical and triangular ice fields,the effects of salinity and velocity on the ice resistance test of the ship model are analyzed.A relationship of the ice resistance of the ship model to the spherical ice field and the triangular ice field is proposed.The conversion results are consistent with onsite data of the full-size ship,which verifies the method of converting the test results of the ship model to the prototype.
文摘IEEE/CAA JOURNAL OF AUTOMATICA SINICA is a joint publication of the IEEE and Chinese Association of Automation.The objective of this journal is high quality and rapid publication of articles,with a strong focus on new trends,original theoretical and experimental research and developments,emerging technologies,and industrial standards in automation.IEEE/CAA Journal of Automatica Sinica publishes high-quality papers in English on original theoretical and experimental research and development in all areas of automation.
基金supported by National Natural Science Foundation of China[51975317].
文摘The degradation characteristics of high-purity(HP)magnesium(Mg)orthopedic implants under static and cyclic compressive loads(SCL and CCL)remain inadequately understood.This study developed an in vivo loading device capable of applying single SCL and CCL while shielding against unpredictable host movements.In vitro degradation experiments of HP Mg implants were conducted to verify the experimental protocol,and in vivo experiments in rabbit tibiae to observe the degradation characteristics of the implants.Micro-computed tomography and scanning electron microscope were used for three-dimensional reconstruction and surface morphology analysis,respectively.Compared to in vitro specimens,in vivo specimens exhibited significantly higher corrosion rates and more extensive cracking.Cracks in the in vivo specimens gradually penetrated deeper from the loading surface,eventually leading to a rapid structural deterioration;whereas in vitro specimens exhibited more surface-localized cracking and a relatively uniform corrosion pattern.Compared to SCL,CCL accelerated both corrosion and cracking to some extent.These findings provide new insights into the in vivo degradation behavior of Mg-based implants under compressive loading conditions.