In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,...In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation.展开更多
Pancreatic cancer is known to have high metastatic potential and low survival rates due to the failure of the therapeutic agents to reach the cancer cells having the dense desmoplastic microenvironment.Exosomes are co...Pancreatic cancer is known to have high metastatic potential and low survival rates due to the failure of the therapeutic agents to reach the cancer cells having the dense desmoplastic microenvironment.Exosomes are considered to be a promising therapeutic agent carrier due to their advantages such as low immunogenicity and easy targeting.More researches and future developments are needed,although exosome-based therapies need further research and development before they can be translated into clinical applications.In this review,we aimed to discuss comparatively two main exosome sources as mesenchymal stem cell(MSC)-derived and macrophage-derived exosomes on pancreatic cancer in terms of the therapeutic potential,advantages,disadvantages and also other comprehensive details.In vitro,in vivo and clinical phase studies examining the therapeutic potential of MSC-derived and macrophage-derived exosomes in pancreatic cancer will be discussed.We strongly believe that this review will guide the new investigations related to exosome-based targeted therapy in pancreatic cancer.In the meantime,we aimed to provide an overview of ongoing research on MSC and macrophage exosome-based therapies,focusing on their role in cancer treatment,particularly for pancreatic cancer.By examining current findings,this review will provide a broad perspective on the therapeutic potential and limitations of exosomes.展开更多
Bladder cancer remains a significant global health challenge,requiring repeated treatments and surveillance and potentially morbid therapies,particularly in advanced and recurrent stages.Exosomes,small extracellular v...Bladder cancer remains a significant global health challenge,requiring repeated treatments and surveillance and potentially morbid therapies,particularly in advanced and recurrent stages.Exosomes,small extracellular vesicles central to intercellular communication,have emerged as innovative tools in cancer diagnostics,prognosis,and therapy.Their role in modulating the immune response and the tumor microenvironment makes them particularly attractive for cancer immunotherapy.This review provides a comprehensive overview of exosome biology,with a focus on their role in immune modulation and potential therapeutic applications.We explore the progress and challenges of exosome-based immunotherapy in cancer,followed by a discussion on the current state of bladder cancer immunotherapy.Additionally,we highlight the roles of exosomes in bladder cancer,emphasizing their diagnostic and prognostic applications.Despite promising preclinical studies and a growing number of clinical trials in other cancers,exosome-based therapies remain underexplored in bladder cancer.We discuss the current clinical trials related to exosomes in bladder cancer and propose their potential future role in immunotherapy.Finally,we address the challenges and opportunities in translating exosome-based therapies from bench to bedside,emphasizing the need for further preclinical and clinical investigations.This review emphasized the potential of exosome-based immunotherapy as a transformative approach for bladder cancer diagnosis and treatment.展开更多
Objective This study aims to investigate the exosome-derived metabolomics profiles in systemic lupus erythematosus(SLE),identify differential metabolites,and analyze their potential as diagnostic markers for SLE and l...Objective This study aims to investigate the exosome-derived metabolomics profiles in systemic lupus erythematosus(SLE),identify differential metabolites,and analyze their potential as diagnostic markers for SLE and lupus nephritis(LN).Methods Totally,91 participants were enrolled between February 2023 and January 2024 including 58 SLE patients[30 with nonrenal-SLE and 28 with Lupus nephritis(LN)]and 33 healthy controls(HC).Ultracentrifugation was used to isolate serum exosomes,which were analyzed for their metabolic profiles using liquid chromatography–tandem mass spectrometry(LC–MS/MS).Endogenous metabolites were identified via public metabolite databases.Random Forest,Lasso regression and Support Vector Machine Recursive Feature Elimination(SVM-RFE)algorithms were employed to screen key metabolites,and a prediction model was constructed for SLE diagnosis and LN discrimination.ROC curves were constructed to determine the potential of these differential exosome-derived metabolites for the diagnosis of SLE.Furthermore,Spearman’s correlation was employed to evaluate the potential links between exosome-derived metabolites and the clinical parameters which reflect disease progression.Results A total of 586 endogenous serum exosome-derived metabolites showed differential expression,with 225 exosome-derived metabolites significantly upregulated,88 downregulated and 273 exhibiting no notable changes in the HC and SLE groups.Machine learning algorithms revealed three differential metabolites:Pro-Asn-Gln-Met-Ser,C24:1 sphingolipid,and protoporphyrin IX,which exhibited AUC values of 0.998,0.992 and 0.969 respectively,for distinguishing between the SLE and HC groups,with a combined AUC of 1.0.In distinguishing between the LN and SLE groups,the AUC values for these metabolites were 0.920,0.893 and 0.865,respectively,with a combined AUC of 0.931,demonstrating excellent diagnostic performance.Spearman correlation analysis revealed that Pro-Asn-Gln-Met-Ser and protoporphyrin IX were positively correlated with the SLE Disease Activity Index(SLEDAI)scores,urinary protein/creatinine ratio(ACR)and urinary protein levels,while C24:1 sphingolipid exhibited a negative correlation.Conclusions This study provides the first comprehensive characterization of the exosome-derived metabolites in SLE and established a promising prediction model for SLE and LN discrimination.The correlation between exosome-derived metabolites and key clinical parameters strongly indicated their potential role in SLE pathological progression.展开更多
Mesenchymal stem cells are highly regarded for their potential in tissue repair and regenerative medicine due to their multipotency and self-renewal abilities.Recently,mesenchymal stem cells have been redefined as“me...Mesenchymal stem cells are highly regarded for their potential in tissue repair and regenerative medicine due to their multipotency and self-renewal abilities.Recently,mesenchymal stem cells have been redefined as“medical signaling cells,”with their primary biological effects mediated through exosome secretion.These exosomes,which contain lipids,proteins,RNA,and metabolites,are crucial in regulating various biological processes and enhancing regenerative therapies.Exosomes replicate the effects of their parent cells while offering benefits such as reduced side effects,low immunogenicity,excellent biocompatibility,and high drug-loading capacity.Dental stem cells,including those from apical papilla,gingiva,dental pulp,and other sources,are key contributors to exosome-mediated regenerative effects,such as tumor cell apoptosis,neuroprotection,angiogenesis,osteogenesis,and immune modulation.Despite their promise,clinical application of exosomes is limited by challenges in isolation techniques.Current methods face issues of complexity,inefficiency,and insufficient purity,hindering detailed analysis.Recent advancements,such as micro-electromechanical systems,alternating current electroosmosis,and serum-free three-dimensional cell cultures,have improved exosome isolation efficacy.This review synthesizes nearly 200 studies on dental stem cell-derived exosomes,highlighting their potential in treating a wide range of conditions,including periodontal diseases,cancer,neurodegenerative disorders,diabetes,and more.Optimized isolation methods offer a path forward for overcoming current limitations and advancing the clinical use of exosome-based therapies.展开更多
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery.Therefore,there is an urgent need to develop new methods for the treatment of this condition.E...Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery.Therefore,there is an urgent need to develop new methods for the treatment of this condition.Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions.They have low immunogenicity,good stability,high delivery efficiency,and the ability to cross the blood–brain barrier.These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke.The rapid development of nanotechnology has advanced the application of engineered exosomes,which can effectively improve targeting ability,enhance therapeutic efficacy,and minimize the dosages needed.Advances in technology have also driven clinical translational research on exosomes.In this review,we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke,including their antiinflammation,anti-apoptosis,autophagy-regulation,angiogenesis,neurogenesis,and glial scar formation reduction effects.However,it is worth noting that,despite their significant therapeutic potential,there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes.Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke.Ultimately,our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.展开更多
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro...“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions.展开更多
Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect...Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.展开更多
Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their ...Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their application value and accuracy in clinical diagnosis, a dual-labelled electrochemical method is herein reported for precise assessment of lung cancer-derived exosomes. To do so, two probes are prepared for the dual labeling of exosome membrane to run DNA assembly reactions: One is modified with cholesterol and can insert into exosome membrane through hydrophobic interaction;another one is linked with programmed death ligand-1(PD-L1) antibody and can bind to exosome surface-expressing PD-L1 via specific immunoreaction. Quantum dots-tagged signal strands are used to collect respective DNA products, and produce stripping signals corresponding to the amounts of total exosome and surfaceexpressing PD-L1, respectively. A wide linear relationship is established for the quantitative determination of lung cancer-derived exosomes in the range from 103to 1010particles/m L, whereas the ratiometric value of the two stripping signals is proven to have a better diagnostic use in screening and staging of lung cancer when being applied to clinical samples. Therefore, our method might provide a new insight into precise diagnosis of lung cancer, and offer sufficient information to refiect the biomarker level and guide the personalized treatment level even at an early stage in clinic.展开更多
Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promi...Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.展开更多
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)...Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.展开更多
In this editorial,we will discuss the article by Tang et al published in the recent issue of the World Journal of Gastrointestinal Oncology.They explored an innovative approach to enhancing gemcitabine(GEM)delivery an...In this editorial,we will discuss the article by Tang et al published in the recent issue of the World Journal of Gastrointestinal Oncology.They explored an innovative approach to enhancing gemcitabine(GEM)delivery and efficacy using human bone marrow mesenchymal stem cells(HU-BMSCs)-derived exosomes.The manufacture of GEM-loaded HU-BMSCs-derived exosomes(Exo-GEM)has been optimized.The Tang et al’s study demonstrated that Exo-GEM exhibits enhanced cytotoxicity and apoptosis-inducing effects compared to free GEM,highlighting the potential of exosome-based drug delivery systems as a more effective and targeted approach to chemotherapy in pancreatic cancer.Additional in vivo studies are required to confirm the safety and effectiveness of Exo-GEM before it can be considered for clinical use.展开更多
We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine func...We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.展开更多
Background:Lung cancer is a life-threatening disease that occurs worldwide,but is especially common in China.The crucial role of the tumour microenvironment(TME)in non-small cell lung cancer(NSCLC)has attracted recent...Background:Lung cancer is a life-threatening disease that occurs worldwide,but is especially common in China.The crucial role of the tumour microenvironment(TME)in non-small cell lung cancer(NSCLC)has attracted recent attention.Cancer-associated fibroblasts(CAFs)are the main factors that contribute to the TME function,and CAF exosomes are closely linked to NSCLC.Methods:The expression levels of miR-3124-5p and Toll-interacting protein(TOLLIP)were analysed by bioinformatics prediction combined with RT-qPCR/Western Blot detection.Fibroblasts were isolated and identified from clinical NSCLC tissues.Transmission electron microscopy and Western Blot were used to identify exosomes from these cells.Changes in proliferation(CCK-8 and clone formation),migration(wound healing),and invasion(transwell)of NSCLC cells were measured.The Luciferase reporter test was applied to clarify the binding of miR-3124-5p to TOLLIP.The TOLLIP/TLR4/MyD88/NF-κB pathway proteins were determined using Western blot analysis.Results:MiR-3124-5p is overexpressed in clinical tissues and cells of NSCLC.MiR-3124-5p was dramatically enriched in CAF-derived exosomes.Cellular experiments revealed that CAFs delivered miR-3124-5p into NSCLC cells via exosomes,stimulating cancer cell progression.MiR-3124-5p acted as a sponge to negatively regulate TOLLIP expression,which activated the TLR4/MyD88/NF-κB axis to promote the occurrence and development of NSCLC.Functional salvage tests were performed to determine whether CAF-exosome-derived miR-3124-5p plays a pro-cancer role in NSCLC by affecting the TOLLIP signalling pathway.Conclusions:These results provide an interesting direction for the diagnosis and therapy of NSCLC.展开更多
Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py ...Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py for ischemic peripheral nerve injuries,this study utilized glucose-modified near-infrared-II(NIR-II)quantum dots(QDs)to label adipose-derived stem cell exosomes(QDs-ADSC-Exos),enabling long-term in vivo NIR-II imaging of exosome treatment for ischemic peripheral nerve damage.Experimental results confirmed that QDs can be used for non-invasive in vitro labeling of exosomes,with QDs-ADSC-Exos exhibiting strong fluorescence signals in the NIR-II window and demonstrating favorable NIR-II imaging characteristics in vivo.Notably,QDsADSC-Exos showed accumulation at the site of nerve injury in cases of ischemic peripheral nerve damage.Func⁃tional neurological assessments indicated that QDs-ADSC-Exos effectively promoted neural regeneration.This study highlights the potential of exosomes in treating ischemic peripheral nerve injuries and elucidates the spatio⁃temporal characteristics of exosome therapy,providing objective evidence for the further optimization of exosomebased treatment protocols.展开更多
Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BM...Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BMSCs)in promoting nerve regeneration,revealing broad prospects for BMSCs trans-plantation in alleviating PNI.We confirmed the fact that BMSCs significantly alleviate PNI,but there are shortcomings such as low cell survival rate and immune rejection,which limit the wide application of BMSCs.BMSCs-derived exosomes(Exos)are considered as a promising cell-free nanomedicine for PNI,avoiding the ethical issues of BMSCs.Exos in combination with bioengineering therapeutics(including extracellular matrix,hydrogel)brings new hope for PNI,provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile,significantly increases ex-pression of neurotrophic factors,promotes axonal and myelin regeneration,and demonstrates a strong potential to enhance neurogenesis.Therefore,engineered Exos exhibit better properties,such as stronger targeting and more beneficial components.This article briefly describes the role of nanotechnology and bioe-ngineering therapies for BMSCs in PNI,proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.展开更多
Herpes simplex virus thymidine kinase(HSVtk)gene therapy is a promising strategy for glioblastoma therapy.However,delivery of plasmid DNA(pDNA)encoding HSVtk into the brain by systemic administration is a challenge si...Herpes simplex virus thymidine kinase(HSVtk)gene therapy is a promising strategy for glioblastoma therapy.However,delivery of plasmid DNA(pDNA)encoding HSVtk into the brain by systemic administration is a challenge since pDNA can hardly penetrate the bloodbrain barrier.In this study,an exosome-membrane(EM)and polymer-based hybrid complex was developed for systemic delivery of pDNA into the brain.Histidine/arginine-linked polyamidoamine(PHR)was used as a carrier.PHR binds to pDNA by electrostatic interaction.The pDNA/PHR complex was mixed with EM and subjected to extrusion to produce pDNA/PHR-EM hybrid complex.For glioblastoma targeting,T7 peptide was attached to the pDNA/PHR-EM complex.Both pDNA/PHR-EM and T7-decorated pDNA/PHR-EM(pDNA/PHREM-T7)had a surface charge of–5 mV and a size of 280 nm.Transfection assays indicated that pDNA/PHR-EM-T7 enhanced the transfection to C6 cells compared with pDNA/PHREM.Intravenous administration of pHSVtk/PHR-EM-T7 showed that pHSVtk/PHR-EM and pHSVtk/PHR-EM-T7 delivered pHSVtk more efficiently than pHSVtk/lipofectamine and pHSVtk/PHR into glioblastoma in vivo.pHSVtk/PHR-EM-T7 had higher delivery efficiency than pHSVtk/PHR-EM.As a result,the HSVtk expression and apoptosis levels in the tumors of the pHSVtk/PHR-EM-T7 group were higher than those of the other control groups.Therefore,the pDNA/PHR-EM-T7 hybrid complex is a useful carrier for systemic delivery of pHSVtk to glioblastoma.展开更多
Exosomes,nanosized extracellular vesicles(30-150 nm),play a crucial role in intercellular communication and are promising biomarkers and therapeutic agents in oncology,neurodegenerative disorders,and immunotherapy.How...Exosomes,nanosized extracellular vesicles(30-150 nm),play a crucial role in intercellular communication and are promising biomarkers and therapeutic agents in oncology,neurodegenerative disorders,and immunotherapy.However,their widespread clinical adoption is constrained by challenges in scalable production,efficient purification,and regulatory standardization.This review critically evaluates recent advancements in exosome bioprocessing,including cell source optimization,culture refinement,and next-generation isolation technologies such as microfluidic microarrays and EXODUS systems.Additionally,we address the limitations of current exosome standardization efforts and propose harmonized protocols to enhance reproducibility.Future research should focus on integrating scalable bioreactor-based systems and artificial intelligence-driven quality control frameworks to accelerate exosome applications in precision medicine and regenerative therapy.展开更多
Rheumatoid arthritis(RA)is a refractory autoimmune disease with limited treatment options.Plantderived exosomes-like nanovesicles(PDENs)have emerged as a novel nanomedical approach,with the inherent bioactive compound...Rheumatoid arthritis(RA)is a refractory autoimmune disease with limited treatment options.Plantderived exosomes-like nanovesicles(PDENs)have emerged as a novel nanomedical approach,with the inherent bioactive compounds from their source plants.The roots of Morinda officinalis How.(MO),a Chinese herb,exhibit notable anti-inflammatory activities and hold promising therapeutic value.We engineered a joint-targe ting delivery system(termed MOE@EM)by masking MO-derived exosomes-like nanovesicles(MOE)with erythrocyte membrane(EM).This biomimetic strategy,using EM camouflage,is intended to improve the in vivo fate of MOE.We investigated the antioxidative and anti-inflammatory activities,immunogenicity,drug accumulation in the joint,and therapeutic efficacy to ascertain its suitability for RA therapy.UV irradiation significantly increased the activities of catalase and peroxidase of MOE,and enhanced the anti-inflammatory effects via the Wnt/β-catenin pathway.Furthermore,MOE@EM markedly attenuated dendritic cell activation.MOE@EM exhibited joint-specific delivery,with substantial reduction in paw swelling,and favorable modulation of immune microenvironment.展开更多
基金supported by the National Natural Science Foundation of China,No.22103055(to JG)the Natural Science Foundation of Hebei Province,No.F2024110001(to HC)Open Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Nos.2024LODTS215(to NL),2024LODTS216(to XS).
文摘In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation.
文摘Pancreatic cancer is known to have high metastatic potential and low survival rates due to the failure of the therapeutic agents to reach the cancer cells having the dense desmoplastic microenvironment.Exosomes are considered to be a promising therapeutic agent carrier due to their advantages such as low immunogenicity and easy targeting.More researches and future developments are needed,although exosome-based therapies need further research and development before they can be translated into clinical applications.In this review,we aimed to discuss comparatively two main exosome sources as mesenchymal stem cell(MSC)-derived and macrophage-derived exosomes on pancreatic cancer in terms of the therapeutic potential,advantages,disadvantages and also other comprehensive details.In vitro,in vivo and clinical phase studies examining the therapeutic potential of MSC-derived and macrophage-derived exosomes in pancreatic cancer will be discussed.We strongly believe that this review will guide the new investigations related to exosome-based targeted therapy in pancreatic cancer.In the meantime,we aimed to provide an overview of ongoing research on MSC and macrophage exosome-based therapies,focusing on their role in cancer treatment,particularly for pancreatic cancer.By examining current findings,this review will provide a broad perspective on the therapeutic potential and limitations of exosomes.
基金funded by start-up funds from the University of Chicago.
文摘Bladder cancer remains a significant global health challenge,requiring repeated treatments and surveillance and potentially morbid therapies,particularly in advanced and recurrent stages.Exosomes,small extracellular vesicles central to intercellular communication,have emerged as innovative tools in cancer diagnostics,prognosis,and therapy.Their role in modulating the immune response and the tumor microenvironment makes them particularly attractive for cancer immunotherapy.This review provides a comprehensive overview of exosome biology,with a focus on their role in immune modulation and potential therapeutic applications.We explore the progress and challenges of exosome-based immunotherapy in cancer,followed by a discussion on the current state of bladder cancer immunotherapy.Additionally,we highlight the roles of exosomes in bladder cancer,emphasizing their diagnostic and prognostic applications.Despite promising preclinical studies and a growing number of clinical trials in other cancers,exosome-based therapies remain underexplored in bladder cancer.We discuss the current clinical trials related to exosomes in bladder cancer and propose their potential future role in immunotherapy.Finally,we address the challenges and opportunities in translating exosome-based therapies from bench to bedside,emphasizing the need for further preclinical and clinical investigations.This review emphasized the potential of exosome-based immunotherapy as a transformative approach for bladder cancer diagnosis and treatment.
基金funded by National Natural Science Foundation of China to Ping Yang with Grant number No.82202600by Nanjing Drum Tower Hospital to Ping Yang with Grant number No.2024-LCYJ-MS-11then to Shou-bin Zhan with Grant number No.2023-JCYJ-QP-25.
文摘Objective This study aims to investigate the exosome-derived metabolomics profiles in systemic lupus erythematosus(SLE),identify differential metabolites,and analyze their potential as diagnostic markers for SLE and lupus nephritis(LN).Methods Totally,91 participants were enrolled between February 2023 and January 2024 including 58 SLE patients[30 with nonrenal-SLE and 28 with Lupus nephritis(LN)]and 33 healthy controls(HC).Ultracentrifugation was used to isolate serum exosomes,which were analyzed for their metabolic profiles using liquid chromatography–tandem mass spectrometry(LC–MS/MS).Endogenous metabolites were identified via public metabolite databases.Random Forest,Lasso regression and Support Vector Machine Recursive Feature Elimination(SVM-RFE)algorithms were employed to screen key metabolites,and a prediction model was constructed for SLE diagnosis and LN discrimination.ROC curves were constructed to determine the potential of these differential exosome-derived metabolites for the diagnosis of SLE.Furthermore,Spearman’s correlation was employed to evaluate the potential links between exosome-derived metabolites and the clinical parameters which reflect disease progression.Results A total of 586 endogenous serum exosome-derived metabolites showed differential expression,with 225 exosome-derived metabolites significantly upregulated,88 downregulated and 273 exhibiting no notable changes in the HC and SLE groups.Machine learning algorithms revealed three differential metabolites:Pro-Asn-Gln-Met-Ser,C24:1 sphingolipid,and protoporphyrin IX,which exhibited AUC values of 0.998,0.992 and 0.969 respectively,for distinguishing between the SLE and HC groups,with a combined AUC of 1.0.In distinguishing between the LN and SLE groups,the AUC values for these metabolites were 0.920,0.893 and 0.865,respectively,with a combined AUC of 0.931,demonstrating excellent diagnostic performance.Spearman correlation analysis revealed that Pro-Asn-Gln-Met-Ser and protoporphyrin IX were positively correlated with the SLE Disease Activity Index(SLEDAI)scores,urinary protein/creatinine ratio(ACR)and urinary protein levels,while C24:1 sphingolipid exhibited a negative correlation.Conclusions This study provides the first comprehensive characterization of the exosome-derived metabolites in SLE and established a promising prediction model for SLE and LN discrimination.The correlation between exosome-derived metabolites and key clinical parameters strongly indicated their potential role in SLE pathological progression.
文摘Mesenchymal stem cells are highly regarded for their potential in tissue repair and regenerative medicine due to their multipotency and self-renewal abilities.Recently,mesenchymal stem cells have been redefined as“medical signaling cells,”with their primary biological effects mediated through exosome secretion.These exosomes,which contain lipids,proteins,RNA,and metabolites,are crucial in regulating various biological processes and enhancing regenerative therapies.Exosomes replicate the effects of their parent cells while offering benefits such as reduced side effects,low immunogenicity,excellent biocompatibility,and high drug-loading capacity.Dental stem cells,including those from apical papilla,gingiva,dental pulp,and other sources,are key contributors to exosome-mediated regenerative effects,such as tumor cell apoptosis,neuroprotection,angiogenesis,osteogenesis,and immune modulation.Despite their promise,clinical application of exosomes is limited by challenges in isolation techniques.Current methods face issues of complexity,inefficiency,and insufficient purity,hindering detailed analysis.Recent advancements,such as micro-electromechanical systems,alternating current electroosmosis,and serum-free three-dimensional cell cultures,have improved exosome isolation efficacy.This review synthesizes nearly 200 studies on dental stem cell-derived exosomes,highlighting their potential in treating a wide range of conditions,including periodontal diseases,cancer,neurodegenerative disorders,diabetes,and more.Optimized isolation methods offer a path forward for overcoming current limitations and advancing the clinical use of exosome-based therapies.
基金supported by the National Natural Science Foundation of China,Nos.82071291(to YY),82301464(to HM)the Norman Bethune Health Science Center of Jilin University,No.2022JBGS03(to YY)+2 种基金a grant from Department of Science and Technology of Jilin Province,Nos.YDZJ202302CXJD061(to YY),20220303002SF(to YY)a grant from Jilin Provincial Key Laboratory,No.YDZJ202302CXJD017(to YY)Talent Reserve Program of First Hospital of Jilin University,No.JDYYCB-2023002(to ZNG)。
文摘Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery.Therefore,there is an urgent need to develop new methods for the treatment of this condition.Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions.They have low immunogenicity,good stability,high delivery efficiency,and the ability to cross the blood–brain barrier.These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke.The rapid development of nanotechnology has advanced the application of engineered exosomes,which can effectively improve targeting ability,enhance therapeutic efficacy,and minimize the dosages needed.Advances in technology have also driven clinical translational research on exosomes.In this review,we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke,including their antiinflammation,anti-apoptosis,autophagy-regulation,angiogenesis,neurogenesis,and glial scar formation reduction effects.However,it is worth noting that,despite their significant therapeutic potential,there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes.Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke.Ultimately,our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
基金supported by the Key Research and Development Project of Hubei Province of China,2022BCA028(to HC)。
文摘“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions.
基金supported by the Science and Technology(S&T)Program of Hebei Province,No.22377798D(to YZ).
文摘Parkinson’s disease is the second most common progressive neurodegenerative disorder,and few reliable biomarkers are available to track disease progression.The proteins,DNA,mRNA,and lipids carried by exosomes reflect intracellular changes,and thus can serve as biomarkers for a variety of conditions.In this study,we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson’s disease and the potential therapeutic roles of these proteins in Parkinson’s disease.Using a tandem mass tag-based quantitative proteomics approach,we characterized the proteomes of plasma exosomes derived from individual patients,identified exosomal protein signatures specific to patients with Parkinson’s disease,and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein.N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot.The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson’s disease,but also decreased with increasing Hoehn-Yahr stage,suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson’s disease severity.Furthermore,western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressingα-synuclein compared with control cells.Additionally,N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibitedα-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells.Taken together,our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson’s disease diagnosis,and that N-acetyl-alpha-glucosaminidase may reduceα-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity,thus providing a new therapeutic target for Parkinson’s disease.
基金supported by the National Natural Science Foundation of China (Nos. 81972799, 82202834, and 81871449)。
文摘Lung cancer-derived exosomes are a kind of valuable and clinically-predictable biomarkers for lung cancer, but they have the limitations in individual differences when being applied in liquid biopsy. To improve their application value and accuracy in clinical diagnosis, a dual-labelled electrochemical method is herein reported for precise assessment of lung cancer-derived exosomes. To do so, two probes are prepared for the dual labeling of exosome membrane to run DNA assembly reactions: One is modified with cholesterol and can insert into exosome membrane through hydrophobic interaction;another one is linked with programmed death ligand-1(PD-L1) antibody and can bind to exosome surface-expressing PD-L1 via specific immunoreaction. Quantum dots-tagged signal strands are used to collect respective DNA products, and produce stripping signals corresponding to the amounts of total exosome and surfaceexpressing PD-L1, respectively. A wide linear relationship is established for the quantitative determination of lung cancer-derived exosomes in the range from 103to 1010particles/m L, whereas the ratiometric value of the two stripping signals is proven to have a better diagnostic use in screening and staging of lung cancer when being applied to clinical samples. Therefore, our method might provide a new insight into precise diagnosis of lung cancer, and offer sufficient information to refiect the biomarker level and guide the personalized treatment level even at an early stage in clinic.
基金Supported by the National Natural Science Foundation of China,No.82072537the General Project of Hunan Natural Science Foundation,No.2022JJ30412 and No.2021JJ30464.
文摘Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.
基金supported by the National Natural Science Foundation of China,No.8227050826(to PL)Tianjin Science and Technology Bureau Foundation,No.20201194(to PL)Tianjin Graduate Research and Innovation Project,No.2022BKY174(to CW).
文摘Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
基金Supported by the grants of China Medical University Hospital,No.DMR-112-173 and No.DMR-113-089the grant from Tungs’Taichung Metro Harbor Hospital,No.TTMHH-R1120013.
文摘In this editorial,we will discuss the article by Tang et al published in the recent issue of the World Journal of Gastrointestinal Oncology.They explored an innovative approach to enhancing gemcitabine(GEM)delivery and efficacy using human bone marrow mesenchymal stem cells(HU-BMSCs)-derived exosomes.The manufacture of GEM-loaded HU-BMSCs-derived exosomes(Exo-GEM)has been optimized.The Tang et al’s study demonstrated that Exo-GEM exhibits enhanced cytotoxicity and apoptosis-inducing effects compared to free GEM,highlighting the potential of exosome-based drug delivery systems as a more effective and targeted approach to chemotherapy in pancreatic cancer.Additional in vivo studies are required to confirm the safety and effectiveness of Exo-GEM before it can be considered for clinical use.
基金supported by the National Natural Science Foundation of China,No.81801907(to NC)Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research,No.ZDSYS20230626091402006(to NC)+2 种基金Sanming Project of Medicine in Shenzhen,No.SZSM201911002(to SL)Foundation of Shenzhen Committee for Science and Technology Innovation,Nos.JCYJ20230807110310021(to NC),JCYJ20230807110259002(to JL)Science and Technology Program of Guangzhou,No.2024A04J4716(to TL)。
文摘We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury.While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function,their precise function in spinal cord injury remains unclear.To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury,we conducted singlecell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury.Subsequently,we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes.The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes.Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs,104 long non-coding RNAs,720 circular RNAs,and 14 microRNAs compared with the control group.Construction of a competing endogenous RNA network identified the following hub genes:tuberous sclerosis 2(Tsc2),solute carrier family 16 member 3(Slc16a3),and forkhead box protein P1(Foxp1).Notably,a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury.TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone.Furthermore,in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells.Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways.In addition,Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways.Collectively,these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
文摘Background:Lung cancer is a life-threatening disease that occurs worldwide,but is especially common in China.The crucial role of the tumour microenvironment(TME)in non-small cell lung cancer(NSCLC)has attracted recent attention.Cancer-associated fibroblasts(CAFs)are the main factors that contribute to the TME function,and CAF exosomes are closely linked to NSCLC.Methods:The expression levels of miR-3124-5p and Toll-interacting protein(TOLLIP)were analysed by bioinformatics prediction combined with RT-qPCR/Western Blot detection.Fibroblasts were isolated and identified from clinical NSCLC tissues.Transmission electron microscopy and Western Blot were used to identify exosomes from these cells.Changes in proliferation(CCK-8 and clone formation),migration(wound healing),and invasion(transwell)of NSCLC cells were measured.The Luciferase reporter test was applied to clarify the binding of miR-3124-5p to TOLLIP.The TOLLIP/TLR4/MyD88/NF-κB pathway proteins were determined using Western blot analysis.Results:MiR-3124-5p is overexpressed in clinical tissues and cells of NSCLC.MiR-3124-5p was dramatically enriched in CAF-derived exosomes.Cellular experiments revealed that CAFs delivered miR-3124-5p into NSCLC cells via exosomes,stimulating cancer cell progression.MiR-3124-5p acted as a sponge to negatively regulate TOLLIP expression,which activated the TLR4/MyD88/NF-κB axis to promote the occurrence and development of NSCLC.Functional salvage tests were performed to determine whether CAF-exosome-derived miR-3124-5p plays a pro-cancer role in NSCLC by affecting the TOLLIP signalling pathway.Conclusions:These results provide an interesting direction for the diagnosis and therapy of NSCLC.
基金Supported by the National Natural Science Foundation of China(82371373,W2412120)the Shanghai Natural Science Foundation(21ZR1436100).
文摘Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py for ischemic peripheral nerve injuries,this study utilized glucose-modified near-infrared-II(NIR-II)quantum dots(QDs)to label adipose-derived stem cell exosomes(QDs-ADSC-Exos),enabling long-term in vivo NIR-II imaging of exosome treatment for ischemic peripheral nerve damage.Experimental results confirmed that QDs can be used for non-invasive in vitro labeling of exosomes,with QDs-ADSC-Exos exhibiting strong fluorescence signals in the NIR-II window and demonstrating favorable NIR-II imaging characteristics in vivo.Notably,QDsADSC-Exos showed accumulation at the site of nerve injury in cases of ischemic peripheral nerve damage.Func⁃tional neurological assessments indicated that QDs-ADSC-Exos effectively promoted neural regeneration.This study highlights the potential of exosomes in treating ischemic peripheral nerve injuries and elucidates the spatio⁃temporal characteristics of exosome therapy,providing objective evidence for the further optimization of exosomebased treatment protocols.
基金Supported by the Tianjin Graduate Research Innovation Project&TUTCM Graduate Research Innovation Project,No.YJSKC-20231012.
文摘Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BMSCs)in promoting nerve regeneration,revealing broad prospects for BMSCs trans-plantation in alleviating PNI.We confirmed the fact that BMSCs significantly alleviate PNI,but there are shortcomings such as low cell survival rate and immune rejection,which limit the wide application of BMSCs.BMSCs-derived exosomes(Exos)are considered as a promising cell-free nanomedicine for PNI,avoiding the ethical issues of BMSCs.Exos in combination with bioengineering therapeutics(including extracellular matrix,hydrogel)brings new hope for PNI,provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile,significantly increases ex-pression of neurotrophic factors,promotes axonal and myelin regeneration,and demonstrates a strong potential to enhance neurogenesis.Therefore,engineered Exos exhibit better properties,such as stronger targeting and more beneficial components.This article briefly describes the role of nanotechnology and bioe-ngineering therapies for BMSCs in PNI,proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.
基金supported by the Individual Basic Science&Engineering Research Program(NRF-2022R1A2B5B01001920)through the National Research Foundation,funded by the Ministry of Science and ICT in Korea.
文摘Herpes simplex virus thymidine kinase(HSVtk)gene therapy is a promising strategy for glioblastoma therapy.However,delivery of plasmid DNA(pDNA)encoding HSVtk into the brain by systemic administration is a challenge since pDNA can hardly penetrate the bloodbrain barrier.In this study,an exosome-membrane(EM)and polymer-based hybrid complex was developed for systemic delivery of pDNA into the brain.Histidine/arginine-linked polyamidoamine(PHR)was used as a carrier.PHR binds to pDNA by electrostatic interaction.The pDNA/PHR complex was mixed with EM and subjected to extrusion to produce pDNA/PHR-EM hybrid complex.For glioblastoma targeting,T7 peptide was attached to the pDNA/PHR-EM complex.Both pDNA/PHR-EM and T7-decorated pDNA/PHR-EM(pDNA/PHREM-T7)had a surface charge of–5 mV and a size of 280 nm.Transfection assays indicated that pDNA/PHR-EM-T7 enhanced the transfection to C6 cells compared with pDNA/PHREM.Intravenous administration of pHSVtk/PHR-EM-T7 showed that pHSVtk/PHR-EM and pHSVtk/PHR-EM-T7 delivered pHSVtk more efficiently than pHSVtk/lipofectamine and pHSVtk/PHR into glioblastoma in vivo.pHSVtk/PHR-EM-T7 had higher delivery efficiency than pHSVtk/PHR-EM.As a result,the HSVtk expression and apoptosis levels in the tumors of the pHSVtk/PHR-EM-T7 group were higher than those of the other control groups.Therefore,the pDNA/PHR-EM-T7 hybrid complex is a useful carrier for systemic delivery of pHSVtk to glioblastoma.
基金supported by the Shanghai Clinical Research Center of Plastic and Reconstructive Surgery,funded by the Science and Technology Commission of Shanghai Municipality(grant no.22MC1940300)the Shanghai Key Research Center—Shanghai Research Center for Plastic Surgery(grant no.2023ZZ02023).
文摘Exosomes,nanosized extracellular vesicles(30-150 nm),play a crucial role in intercellular communication and are promising biomarkers and therapeutic agents in oncology,neurodegenerative disorders,and immunotherapy.However,their widespread clinical adoption is constrained by challenges in scalable production,efficient purification,and regulatory standardization.This review critically evaluates recent advancements in exosome bioprocessing,including cell source optimization,culture refinement,and next-generation isolation technologies such as microfluidic microarrays and EXODUS systems.Additionally,we address the limitations of current exosome standardization efforts and propose harmonized protocols to enhance reproducibility.Future research should focus on integrating scalable bioreactor-based systems and artificial intelligence-driven quality control frameworks to accelerate exosome applications in precision medicine and regenerative therapy.
基金supported by the National Key Research and Development Program of China(Nos.2021YFC2400600,2022YFE0203600)National Natural Science Foundation of China(Nos.81925035,82304842,82204628)+6 种基金High-level Innovative Research Institute(No.2021B0909050003)Chinese Academy of Sciences President’s International Fellowship Initiative(No.2024VBB0004)the Scientific and Technological Innovation Projects in Zhongshan City(Nos.LJ2021001,CXTD2022011)the Social Welfare and Basic Research Projects in Zhongshan(No.221014134359625)the Special Projects in Key Areas of Colleges and Universities in Guangdong Province(No.2022ZDZX2015)the Science and Technology Program of Guangzhou(No.2024A04J4899)Young Talent Project of Guangzhou University of Chinese Medicine(No.A1–2601–24–414–110Z76)。
文摘Rheumatoid arthritis(RA)is a refractory autoimmune disease with limited treatment options.Plantderived exosomes-like nanovesicles(PDENs)have emerged as a novel nanomedical approach,with the inherent bioactive compounds from their source plants.The roots of Morinda officinalis How.(MO),a Chinese herb,exhibit notable anti-inflammatory activities and hold promising therapeutic value.We engineered a joint-targe ting delivery system(termed MOE@EM)by masking MO-derived exosomes-like nanovesicles(MOE)with erythrocyte membrane(EM).This biomimetic strategy,using EM camouflage,is intended to improve the in vivo fate of MOE.We investigated the antioxidative and anti-inflammatory activities,immunogenicity,drug accumulation in the joint,and therapeutic efficacy to ascertain its suitability for RA therapy.UV irradiation significantly increased the activities of catalase and peroxidase of MOE,and enhanced the anti-inflammatory effects via the Wnt/β-catenin pathway.Furthermore,MOE@EM markedly attenuated dendritic cell activation.MOE@EM exhibited joint-specific delivery,with substantial reduction in paw swelling,and favorable modulation of immune microenvironment.