期刊文献+
共找到1,235篇文章
< 1 2 62 >
每页显示 20 50 100
A Novel Passive Neck and Trunk Exoskeleton for Surgeons:Design and Validation
1
作者 Ce Zhang Juha M.Hijmans +3 位作者 Christian Greve Han Houdijk Gijsbertus Jacob Verkerke Charlotte Christina Roossien 《Journal of Bionic Engineering》 2025年第1期226-237,共12页
Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support ... Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort. 展开更多
关键词 Neck exoskeleton Trunk exoskeleton Passive exoskeleton Surgeon support Nonlinear modeling
暂未订购
AES-SEA and Bionic Knee Based Lower Limb Exoskeleton Design and LQR-virtual Tunnel Control
2
作者 Yi Long Zhibin Cai Hexiao Guo 《Journal of Bionic Engineering》 2025年第3期1231-1248,共18页
The lower limb assisted exoskeleton is a prominent area of research within the field of exoskeleton technology.However,several challenges remain,including the development of flexible actuators,high battery consumption... The lower limb assisted exoskeleton is a prominent area of research within the field of exoskeleton technology.However,several challenges remain,including the development of flexible actuators,high battery consumption,the risk of joint misalignment,and limited assistive capabilities.This paper proposes a compact flexible actuator incorporating two elastic elements named Adjustable Energy Storage Series Elastic Actuator(AES-SEA),which combining an adjustable energy storage device with a series elastic actuator for application in exoskeleton hip joints.This design aims to enhance energy efficiency and improve assistive effects.Subsequently,we introduce a novel knee joint bionic structure based on a pulley-groove configuration and a four-link mechanism,designed to replicate human knee joint motion and prevent joint misalignment.Additionally,we propose an innovative controller that integrates concepts from Linear Quadratic Regulator(LQR)control and virtual tunnel for level walking assistance.This controller modulates the assisted reference trajectory using the virtual tunnel concept,enabling different levels of assistance both inside and outside the tunnel by adjusting the parameters Q and R.This approach enhances the assisting force while ensuring the safety of human-computer interaction.Finally,metabolic experiments were conducted to evaluate the effectiveness of the exoskeleton assistance. 展开更多
关键词 Bioinspired joint Energy storage Human-exoskeleton Interaction Lower limb exoskeleton LQR control Series elastic actuation(SEA)
在线阅读 下载PDF
Active Disturbance Rejection Control Based on Twin-Delayed Deep Deterministic Policy Gradient for an Exoskeleton
3
作者 Zhong Li Xiaorong Guan +4 位作者 Chunyang Liu Dingzhe Li Long He Yanfeng Cao Yi Long 《Journal of Bionic Engineering》 2025年第3期1211-1230,共20页
The study of exoskeletons has been a popular topic worldwide.However,there is still a long way to go before exoskeletons can be widely used.One of the major challenges is control,and there is no specific research tren... The study of exoskeletons has been a popular topic worldwide.However,there is still a long way to go before exoskeletons can be widely used.One of the major challenges is control,and there is no specific research trend for controlling exoskeletons.In this paper,we propose a novel exoskeleton control strategy that combines Active Disturbance Rejection Control(ADRC)and Deep Reinforcement Learning(DRL).The dynamic model of the exoskeleton is constructed,followed with the design of the ADRC.To automatically adjust the control parameters of the ADRC,the Twin-Delayed Deep Deterministic Policy Gradient(TD3)is utilized.Then a reward function is defined in terms of the joint angle,angular velocity,and their errors to the desired values,to maximize the accuracy of the joint angle.In the simulations and experiments,a conventional ADRC,and ADRC based on Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)were carried out for comparison with the proposed control method.The results of the tests show that TD3-ADRC has a rapid response,small overshoot,and low Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)followed with the desired,demonstrating the superiority of the proposed control method for the self-learning control of exoskeleton. 展开更多
关键词 exoskeleton ADRC TD3 Parameter tuning
在线阅读 下载PDF
Flatness Control with Cascaded Filtered High-Gain and Disturbance Observers for Rehabilitation Exoskeletons
4
作者 Sahbi Boubaker Salim Hadj Said +1 位作者 Souad Kamel Habib Dimassi 《Computers, Materials & Continua》 2025年第12期5703-5721,共19页
Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes... Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear,time-varying dynamics of human-robot interaction,limited sensor availability,and unknown external disturbances.This study proposes a novel control strategy that combines flatness-based control with two cascaded observers:a high-gain observer to estimate unmeasured joint velocities,and a nonlinear disturbance observer to reconstruct external torque disturbances in real time.These estimates are integrated into the control law to enable robust,state-feedback-based trajectory tracking.The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations,reflecting realistic rehabilitation conditions.Results confirm that the proposed method significantly enhances tracking accuracy and disturbance rejection capability,demonstrating its strong potential for reliable and adaptive rehabilitation assistance. 展开更多
关键词 exoskeleton control rehabilitation robot trajectory tracking state and disturbance estimation cascade observer
在线阅读 下载PDF
Structural Design and Analysis of Lower Limb Exoskeleton Robotics
5
作者 Mingshuo ZHANG Yutong LI +2 位作者 Sheng ZHANG Yuanhai DING Chuanqi LI 《Mechanical Engineering Science》 2025年第1期20-25,共6页
With the acceleration of the global aging process and the increase of cardiovascular ancerebrovascular diseases,more and more patients are paralyzed due to accidents,so theexoskeleton robot began to appear in people&#... With the acceleration of the global aging process and the increase of cardiovascular ancerebrovascular diseases,more and more patients are paralyzed due to accidents,so theexoskeleton robot began to appear in people's sight,and the lower limb exoskeleton robot withrehabilitation training is also favored by more and more people.In this paper,the structural designand analysis of the lower limb exoskeleton robot are carried out in view of the patients'expectation ofnormal walking.First,gait analysis and structural design of lower limb exoskeleton robot.Based onthe analysis of the walking gait of normal people,the freedom of the three key joints of the lower limbexoskeleton robot hip joint,knee joint and ankle joint is determined.at the same time,according tothe structuralcharacteristics of each joint,the three key joints are modeled respectively,and theoverall model assembly of the lower limb exoskeleton robot is completed.Secondly,the kinematicsanalysis of the lower limb exoskeleton robot was carried out to obtain the relationship between thelinear displacement,linear speed and acceleration of each joint,so as to ensure the coordination ofthe model with the human lower limb movement.Thirdly,the static analysis of typical gait of hipjoint,knee joint and ankle joint is carried out to verify the safety of the design model under thepremise of ensuring the structural strength requirements.Finally,the parts of the model were 3Dprinted,and the rationality of the design was further verified in the process of assembling the model. 展开更多
关键词 exoskeleton Robots Mechanical Structure Design Finite Element Analysis Motion Simulation
在线阅读 下载PDF
Snow Leopard-inspired Lower Limb Exoskeleton for Adaptive Multi-terrain Locomotion:Design and Preliminary Experimental Evaluation
6
作者 Yi Long Xiaofeng Luo +3 位作者 Tianqi Zhou Xiaopeng Hu Long He Wei Dong 《Journal of Bionic Engineering》 2025年第3期1249-1264,共16页
To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a... To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a non-fully anthropomorphic design,attaching only at the thigh and ankle with a backward-knee configuration to mimic natural human knee movement.The design incorporates a single elastic element at the hip for gravity compensation and dual elastic elements at the knee for terrain adaptability,which adjust based on walking context.The design’s effectiveness was assessed by measuring metabolic cost reduction and motor output torque under various walking conditions.Results showed significant metabolic cost savings of 5.8–8.8%across different speeds and a 7.9%reduction during 9°incline walking on a flat indoor surface.Additionally,the spring element decreased hip motor output torque by 7–15.9%and knee torque by 8.1–14.2%.Outdoor tests confirmed the design’s robustness and effectiveness in reducing motor torque across terrains,highlighting its potential to advance multi-terrain adaptive exoskeleton research. 展开更多
关键词 Lower limb exoskeleton Bionic structure Multi-terrain adaptive structure Backward-knee configuration Non-exhaustive anthropomorphism
在线阅读 下载PDF
Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer
7
作者 Mohammad Soleimani Amiri Sahbi Boubaker +1 位作者 Rizauddin Ramli Souad Kamel 《Computer Modeling in Engineering & Sciences》 2025年第9期3113-3133,共21页
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe... Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons. 展开更多
关键词 Adaptive neural network controller disturbance observer upper-limb exoskeleton rehabilitation robotics Lyapunov stability radial basis function network
在线阅读 下载PDF
Virtual Impedance Adaptation of Lower-Limb Exoskeleton for Human Performance Augmentation Based on Deep Reinforcement Learning
8
作者 Ranran Zheng Zhiyuan Yu +3 位作者 Hongwei Liu Junqin Lin Bo Zeng Longfei Jia 《Chinese Journal of Mechanical Engineering》 2025年第6期189-207,共19页
This paper proposes virtual impedance adaptation of the lower-limb exoskeleton for human performance augmentation(LEHPA) based on deep reinforcement learning(VIADRL) to mitigate reliance on model accuracy and address ... This paper proposes virtual impedance adaptation of the lower-limb exoskeleton for human performance augmentation(LEHPA) based on deep reinforcement learning(VIADRL) to mitigate reliance on model accuracy and address the ever-changing human-exoskeleton interaction(HEI) dynamics. The classical sensitivity amplification control strategy is expanded to the virtual impedance control strategy with more learnable virtual impedance parameters. The adjustment of these virtual impedance parameters is formalized as finding the optimal policy for a Markov Decision Process and can then be effectively resolved using deep reinforcement learning algorithms. To ensure safe and efficient policy training, a multibody simulation environment is established to facilitate the training process, supplemented by the innovative hybrid inverse-forward dynamics simulation approach for executing the simulation. For comparison purposes, the SADRL strategy is introduced as a benchmark. A novel control performance evaluation method based on the HEI forces at the back, thighs, and shanks is proposed to quantitatively evaluate the performance of our proposed VIADRL strategy. The VIADRL controller is systematically compared with the SADRL controller at five selected walking speeds. The lumped ratio of HEI forces under the SADRL strategy relative to those under the SADRL strategy is as low as 0.81 in simulation and approximately 0.89 on the LEHPA prototype. The overall reduction of HEI forces demonstrates the superiority of the VIADRL strategy in comparison to the SADRL strategy. 展开更多
关键词 Lower-limb exoskeleton for human performance augmentation(LEHPA) Virtual impedance adaptation Deep reinforcement learning Control performance evaluation
在线阅读 下载PDF
CPG-based gait planning and model-independent adaptive time-delay control for lower limb rehabilitation exoskeleton robots
9
作者 Zhe Sun Weixin Chen +3 位作者 Bo Chen Hai Wang Jinchuan Zheng Zhihong Man 《Control Theory and Technology》 2025年第4期650-662,共13页
Focusing on the rehabilitation training of hemiplegia patients,this paper proposes a gait-planning strategy based on a central pattern generator and an adaptive time-delay control scheme that utilizes recursive termin... Focusing on the rehabilitation training of hemiplegia patients,this paper proposes a gait-planning strategy based on a central pattern generator and an adaptive time-delay control scheme that utilizes recursive terminal sliding mode for lower limb rehabilitation exoskeleton robots.The central pattern generator network plans a reference gait trajectory for the affected leg,synchronized with the movement of the healthy leg.The proposed adaptive time-delay control scheme possesses a model-independent property due to the mechanism of time-delay estimation,with adaptive control gains that enhance the resilience against system perturbations and a recursive terminal sliding mode control component to achieve a fast convergence rate.According to the Lyapunov stability criterion,it is proved that the gait trajectory-tracking error is uniformly ultimately bounded.Experiments are conducted on a lower limb exoskeleton experimental platform,and the experimental results demonstrate the effectiveness and superiority of the proposed strategies. 展开更多
关键词 Lower limb rehabilitation exoskeleton robot(LLRER) Central pattern generator(CPG) Time-delay estimation(TDE) Sliding mode control(SMC)
原文传递
Bionic Design to Reduce Driving Power for a Portable Elbow Exoskeleton Based on Gravity-balancing Coupled Model 被引量:2
10
作者 Qiaoling Meng Rongna Xu +3 位作者 Qiaolian Xie Bostan·Mahmutjan Sujiao Li Hongliu Yu 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第1期146-157,共12页
Portability is an important performance to the design of exoskeleton for rehabilitation and assistance.However,the structure of traditional exoskeletons will decrease the portability because of their heavy weight and ... Portability is an important performance to the design of exoskeleton for rehabilitation and assistance.However,the structure of traditional exoskeletons will decrease the portability because of their heavy weight and large volume.This paper proposes a novel bionic portable elbow exoskeleton based on a human-exoskeleton gravity-balancing coupled model.The variable stiffness characteristics of the coupled model is analyzed based on the static analysis.In addition,the optimization of human-exoskeleton joint points is analysis to improve the bionic motor characteristics of the exoskeleton.Theoretical prototype is designed and its driving power and dynamic performance are analyzed.Then,a prototype is designed and manufactured with a total weight of 375 g.The merits of driving power reducing is verified by simulation and the isokinetic experiments.The simulation and isokinetic results show that the driving torque and the driving power of the subject were significantly decreased with wearing the proposed exoskeleton.The driving torques are reduced 79.28%and 57.38%from the simulation results and isokinetic experiment results,respectively.The driving work of experiment was reduced by 56.5%.The development of the novel elbow exoskeleton with gravity-balancing mechanism can expand the application of exoskeleton in home-based rehabilitation. 展开更多
关键词 Elbow exoskeleton Bionic Gravity-balancing Human-exoskeleton coupled model-Portability
在线阅读 下载PDF
Analysis of a passive ankle exoskeleton for reduction of metabolic costs during walking
11
作者 Luís Quinto Pedro Pinheiro +3 位作者 Sergio B.Goncalves Ivo Roupa Paula Simoes Miguel Tavares da Silva 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期62-68,共7页
Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these chal... Modern conflicts demand substantial physical and psychological exertion,often resulting in fatigue and diminished combat or operational readiness.Several exoskeletons have been developed recently to address these challenges,presenting various limitations that affect their operational or everyday usability.This article evaluates the performance of a dual-purpose passive ankle exoskeleton developed for the reduction of metabolic costs during walking,seeking to identify a force element that could be applied to the target population.Based on the 6-min walk test,twenty-nine subjects participated in the study using three different force elements.The results indicate that it is possible to reduce metabolic expenditure while using the developed exoskeleton.Additionally,the comfort and range of motion results verify the exoskeleton's suitability for use in uneven terrain and during extended periods.Nevertheless,the choice of the force element should be tailored to each user,and the control system should be adjustable to optimise the exoskeleton's performance. 展开更多
关键词 Ankle passive exoskeleton Metabolic cost reduction Dual-use exoskeleton GAIT Biomechanics
在线阅读 下载PDF
A Review on Lower Limb Rehabilitation Exoskeleton Robots 被引量:61
12
作者 Di Shi Wuxiang Zhang +1 位作者 Wei Zhang Xilun Ding 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第4期2-12,共11页
Lower limb rehabilitation exoskeleton robots integrate sensing, control, and other technologies and exhibit the characteristics of bionics, robotics, information and control science, medicine, and other interdisciplin... Lower limb rehabilitation exoskeleton robots integrate sensing, control, and other technologies and exhibit the characteristics of bionics, robotics, information and control science, medicine, and other interdisciplinary areas. In this review, the typical products and prototypes of lower limb exoskeleton rehabilitation robots are introduced and stateof-the-art techniques are analyzed and summarized. Because the goal of rehabilitation training is to recover patients’ sporting ability to the normal level, studying the human gait is the foundation of lower limb exoskeleton rehabilitation robot research. Therefore, this review critically evaluates research progress in human gait analysis and systematically summarizes developments in the mechanical design and control of lower limb rehabilitation exoskeleton robots. From the performance of typical prototypes, it can be deduced that these robots can be connected to human limbs as wearable forms;further, it is possible to control robot movement at each joint to simulate normal gait and drive the patient’s limb to realize robot-assisted rehabilitation training. Therefore human–robot integration is one of the most important research directions, and in this context, rigid-flexible-soft hybrid structure design, customized personalized gait generation, and multimodal information fusion are three key technologies. 展开更多
关键词 Control method LOWER LIMB exoskeleton Mechanical design REHABILITATION ROBOT
在线阅读 下载PDF
Proceeding of Human Exoskeleton Technology and Discussions on Future Research 被引量:21
13
作者 LI Zhiqiang XIE Hanxing +1 位作者 LI Weilin YAO Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期437-447,共11页
After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented... After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented, both in active and passive categories. Major models are introduced, and typical technologies are commented on. Difficulties in control algorithm, driver system, power source, and man-machine interface are discussed. Current researching routes and major developing methods are mapped and critically analyzed, and in the process, some key problems are revealed. First, the exoskeleton is totally different from biped robot, and relative studies based on the robot technologies are considerably incorrect. Second, biomechanical studies are only used to track the motion of the human body, the interaction between human and machines are seldom studied. Third, the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems. Research attention should be shifted to the human side of the coupling system, and the human ability to learn and adapt should play a more significant role in the control algorithms Having summarized the major difficulties, possible future works are discussed. It is argued that, since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system, the more complex the control system gets, the more difficult it is for the user to learn to use. It is suggested that the exoskeleton should be treated as a simple wearable tool, and downgrading its automatic level may be a change toward a brighter research outlook. This effort at simplification is definitely not easy, as it necessitates theoretical supports from fields such as biomechanics, ergonomics, and bionics. 展开更多
关键词 exoskeleton ROBOT BIOMECHANICS ERGONOMICS BIONICS
在线阅读 下载PDF
Structure Design of Lower Limb Exoskeletons for Gait Training 被引量:14
14
作者 LI Jianfeng ZHANG Ziqiang +1 位作者 TAO Chunjing JI Run 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期878-887,共10页
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patie... Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons. 展开更多
关键词 gait training lower limb exoskeleton structure design kinematic compatibility even-constrained kinematic chain
暂未订购
Development of a Hand Exoskeleton System for Index Finger Rehabilitation 被引量:14
15
作者 LI Jiting WANG Shuang +3 位作者 WANG Ju ZHENG Ruoyin ZHANG Yuru CHEN Zhongyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期223-233,共11页
In order to overcome the drawbacks of traditional rehabilitation method,the robot-aided rehabilitation has been widely investigated for the recent years.And the hand rehabilitation robot,as one of the hot research fie... In order to overcome the drawbacks of traditional rehabilitation method,the robot-aided rehabilitation has been widely investigated for the recent years.And the hand rehabilitation robot,as one of the hot research fields,remains many challenging issues to be investigated.This paper presents a new hand exoskeleton system with some novel characteristics.Firstly,both active and passive rehabilitative motions are realized.Secondly,the device is elaborately designed and brings advantages in many aspects.For example,joint motion is accomplished by a parallelogram mechanism and high level motion control is therefore made very simple without the need of complicated kinematics.The adjustable joint limit design ensures that the actual joint angles don't exceed the joint range of motion(ROM) and thus the patient safety is guaranteed.This design can fit to the different patients with different joint ROM as well as to the dynamically changing ROM for individual patient.The device can also accommodate to some extent variety of hand sizes.Thirdly,the proposed control strategy simultaneously realizes the position control and force control with the motor driver which only works in force control mode.Meanwhile,the system resistance compensation is preliminary realized and the resisting force is effectively reduced.Some experiments were conducted to verify the proposed system.Experimentally collected data show that the achieved ROM is close to that of a healthy hand and the range of phalange length(ROPL) covers the size of a typical hand,satisfying the size need of regular hand rehabilitation.In order to evaluate the performance when it works as a haptic device in active mode,the equivalent moment of inertia(MOI) of the device was calculated.The results prove that the device has low inertia which is critical in order to obtain good backdrivability.The experiments also show that in the active mode the virtual interactive force is successfully feedback to the finger and the resistance is reduced by one-third;for the passive control mode,the desired trajectory is realized satisfactorily. 展开更多
关键词 exoskeleton hand rehabilitation Bowden-cable transmission active control mode passive control mode
在线阅读 下载PDF
Design of a Passive Gait‑based Ankle‑foot Exoskeleton with Self‑adaptive Capability 被引量:10
16
作者 Xiangyang Wang Sheng Guo +2 位作者 Bojian Qu Majun Song Haibo Qu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期86-96,共11页
Propulsion during push-off is the key to realizing human locomotion.Humans have evolved a way of walking with high energy utilization,but it can be further improved.Drawing inspiration from the muscle-tendon unit,a pa... Propulsion during push-off is the key to realizing human locomotion.Humans have evolved a way of walking with high energy utilization,but it can be further improved.Drawing inspiration from the muscle-tendon unit,a passive spring-actuated ankle-foot exoskeleton is designed to assist with human walking and to lengthen walking duration by mechanically enhancing walking efficiency.Detection of the gait events is realized using a smart clutch,which is designed to detect the contact states between the shoe sole and the ground,and automatically switch its working state.The engagement of a suspended spring behind the human calf muscles is hence controlled and is in synchrony with gait.The device is completely passive and contains no external power source.Energy is stored and returned passively using the clutch.In our walking trials,the soleus electromyography activity is reduced by as much as 72.2%when the proposed ankle-foot exoskeleton is worn on the human body.The influence of the exoskeleton on walking habits is also studied.The results show the potential use of the exoskeleton in humans’daily life. 展开更多
关键词 Ankle-foot exoskeleton Energy cost Self-adaptiveness Human augmentation
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部