Advancements in healthcare technology have improved mortality rates and extended lifespans,resulting in a population with multiple comorbidities that complicate patient care.Traditional assessments often fall short,un...Advancements in healthcare technology have improved mortality rates and extended lifespans,resulting in a population with multiple comorbidities that complicate patient care.Traditional assessments often fall short,underscoring the need for integrated care strategies.Among these,fluid management is particularly challenging due to the difficulty in directly assessing volume status especially in critically ill patients who frequently have peripheral oedema.Effective fluid ma-nagement is essential for optimal tissue oxygen delivery,which is crucial for cellular metabolism.Oxygen transport is dependent on arterial oxygen levels,haemoglobin concentration,and cardiac output,with the latter influenced by preload,afterload,and cardiac contractility.A delicate balance of these factors ensures that the cardiovascular system can respond adequately to varying ph-ysiological demands,thereby safeguarding tissue oxygenation and overall organ function during states of stress or illness.The Venous Excess Ultrasound(VExUS)Grading System is instrumental in evaluating fluid intolerance,providing detailed insights into venous congestion and fluid status.It was originally developed to assess the risk of acute kidney injury in postoperative cardiac patients,but its versatility has enabled broader applications in nephrology and critical care settings.This mini review explores VE×US’s application and its impact on fluid management and patient outcomes in critically ill patients.展开更多
Anaerobic digestion(AD)is widely employed for sludge stabilization and waste reduction.However,the slow hydrolysis process hinders methane production and leads to prolonged sludge issues.In this study,an efficient and...Anaerobic digestion(AD)is widely employed for sludge stabilization and waste reduction.However,the slow hydrolysis process hinders methane production and leads to prolonged sludge issues.In this study,an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges.By optimizing lysozyme dosage,hydrolysis and cell lysis were maximized.Furthermore,lysozyme combined with hydrothermal pretreatment enhanced overall efficiency.Results indicate that:(1)When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment,SCOD,soluble polysaccharides,and protein content reached their maxima at 855.00,44.09,and 204.86 mg/L,respectively.This represented an increase of 85.87%,365.58%,and 259.21%compared to the untreated sludge.Threedimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region(soluble microbial product),promoting microbial metabolic activity.(2)Lysozyme combined with hydrothermal pretreatment significantly increased SCOD,soluble proteins,and polysaccharide release from sludge,reducing SCOD release time.Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release,while Group 9 released the most soluble proteins.The significance order of factors influencing SCOD,soluble proteins,and polysaccharide release is hydrothermal temperature>hydrothermal time>enzymatic digestion time.(3)The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion.Maximum SCOD consumption and cumulative gas production increased by 95.89%and 130.58%,respectively,compared to the control group,allowing gas production to conclude 3 days earlier.展开更多
Climate change is a pressing global environmental issue^([1]).The gradual rise in global surface temperature is the most immediate and direct among its public health impacts.Influenza,the leading cause of human respir...Climate change is a pressing global environmental issue^([1]).The gradual rise in global surface temperature is the most immediate and direct among its public health impacts.Influenza,the leading cause of human respiratory viral infections,remains a substantial public health concern owing to its considerable disease burden,particularly in highrisk groups.Mounting epidemiological evidence has linked influenza to extreme heat and cold weather^([2–4]).展开更多
Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A...Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A carbon quota trading system is established based on the baseline method,and the stepwise function is adopted to quantify the cost of excess carbon emissions;Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid(V2G)to enhance the flexible regulation ability.Aiming at the uncertainty of wind and solar output,a typical scene set is generated by combining Latin hypercube sampling with the scene reduction method.The goal is to minimize the operating cost and maximize the consumption of renewable energy,and it is solved through the CPLEX solver in the MATLAB platform.Through simulation verification of the proposed models and methods in various scenarios,the simulation results show that under the coupling of the carbon excess rate trading mechanism,the demand response mechanism,and the vehicle-to-grid interaction of electric vehicles,the total daily operating cost of the system decreases by 25.3%,reduce the dual pressure of energy consumption costs and the economic environment,and achieve the coordinated optimization of economic and ecological benefits.展开更多
Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some prod...Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some production data analysis techniques have been adapted from conventional oil and gas wells,there remains a gap in the understanding of pore pressure generation and evolution,particularly in wells subjected to large-scale hydraulic fracturing.To address this gap,a novel technique called excess pore pressure analysis(EPPA)has been introduced to the coal seam gas industry for the first time to our knowledge,which employs dual-phase flow principles based on consolidation theory.This technique focuses on the generation and dissipation for excess pore-water pressure(EPWP)and excess pore-gas pressure(EPGP)in stimulated deep coal reservoirs.Equations have been developed respectively and numerical solutions have been provided using the finite element method(FEM).Application of this model to a representative field example reveals that excess pore pressure arises from rapid loading,with overburden weight transferred under undrained condition due to intense hydraulic fracturing,which significantly redistributes the weight-bearing role from the solid coal structure to the injected fluid and liberated gas within artificial pores over a brief timespan.Furthermore,field application indicates that the dissipation of EPWP and EPGP can be actually considered as the process of well production,where methane and water are extracted from deep coalbed methane wells,leading to consolidation for the artificial reservoirs.Moreover,history matching results demonstrate that the excess-pressure model established in this study provides a better explanation for the declining trends observed in both gas and water production curves,compared to conventional practices in coalbed methane reservoir engineering and petroleum engineering.This research not only enhances the understanding of DCBM reservoir behavior but also offers insights applicable to production analysis in other unconventional resources reliant on hydraulic fracturing.展开更多
BACKGROUND The coronavirus disease 2019(COVID-19)pandemic disrupted healthcare in the United States.AIM To investigate COVID-19-related and non-COVID-19-related death and characteristics associated with excess death a...BACKGROUND The coronavirus disease 2019(COVID-19)pandemic disrupted healthcare in the United States.AIM To investigate COVID-19-related and non-COVID-19-related death and characteristics associated with excess death among inflammatory bowel disease(IBD)decedents.METHODS We performed a register-based study using data from the National Vital Statistics System,which reports death data from over 99%of the United States population,from January 1,2006 through December 31,2021.IBD-related deaths among adults 25 years and older were stratified by age,sex,race/ethnicity,place of death,and primary cause of death.Predicted and actual age-standardized mortality rates(ASMRs)per 100000 persons were compared.RESULTS 49782 IBD-related deaths occurred during the study period.Non-COVID-19-related deaths increased by 13.14%in 2020 and 18.12%in 2021[2020 ASMR:1.55 actual vs 1.37 predicted,95%confidence interval(CI):1.26-1.49;2021 ASMR:1.63 actual vs 1.38 predicted,95%CI:1.26-1.49].In 2020,non-COVID-19-related mortality increased by 17.65%in ulcerative colitis(UC)patients between the ages of 25 and 65 and 36.36%in non-Hispanic black(NHB)Crohn’s disease(CD)patients.During the pandemic,deaths at home or on arrival and at medical facilities as well as deaths due to neoplasms also increased.CONCLUSION IBD patients suffered excess non-COVID-19-related death during the pandemic.Excess death was associated with younger age among UC patients,and with NHB race among CD patients.Increased death at home or on arrival and due to neoplasms suggests that delayed presentation and difficulty accessing healthcare may have led to increased IBD mortality.展开更多
Birth defects have become a public health concern.The hazardous environmental factors exposure to embryos could increase the risk of birth defects.Cadmium,a toxic environmental factor,can cross the placental barrier d...Birth defects have become a public health concern.The hazardous environmental factors exposure to embryos could increase the risk of birth defects.Cadmium,a toxic environmental factor,can cross the placental barrier during pregnancy.Pregnant woman may be subjected to cadmium before taking precautionary protective actions.However,the link between birth defects and cadmium remains obscure.Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses.Cadmium exposure activated the p53 via enhancing the adenosine 5‘-monophosphate(AMP)-activated protein kinase(AMPK)and reactive oxygen species'(ROS)level.And cadmium decreases the level of Paired box 3(Pax3)and murine double minute 2(Mdm2),disrupting the process of p53 ubiquitylation.And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses.Excessive apoptosis led to the failure of neural tube closure.The study emphasizes that environmental materials may increase the health risk for embryos.Cadmium caused the failure of neural tube closure during early embryotic day.Pregnant women may be exposed by cadmium before taking precautionary protective actions,because of cadmium concentration-containing foods and environmental tobacco smoking.This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.展开更多
Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law s...Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law scaling:D(ω)~ω~γ.However,it remains debated on the value of γ at low frequencies below the first phonon-like mode in finitesize glasses.Early simulation studies reported γ=4 at low frequencies in two-(2D),three-(3D),and four-dimensional(4D)glasses,whereas recent observations in 2D and 3D glasses suggested γ=3.5 in a lower-frequency regime.It is uncertain whether the low-frequency scaling of D(ω)~ω^(3.5) could be generalized to 4D glasses.Here,we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses.It is found that the system size dependence of D(ω) below the first phonon-like mode varies with spatial dimensions:D(ω) increases in2D glasses but decreases in 3D and 4D glasses as the system size increases.Furthermore,we demonstrate that the ω^(3.5)scaling,rather than the ω~4 scaling,works in the lowest-frequency regime accessed in 4D glasses,regardless of interaction potentials and system sizes examined.Therefore,our findings in 4D glasses,combined with previous results in 2D and 3D glasses,suggest a common low-frequency scaling of D(ω)~ ω^3.5) below the first phonon-like mode across different spatial dimensions,which would inspire further theoretical studies.展开更多
Point-of-care ultrasonography(POCUS),particularly venous excess ultrasound(VExUS)is emerging as a valuable bedside tool to gain real-time hemodynamic insights.This modality,derived from hepatic vein,portal vein,and in...Point-of-care ultrasonography(POCUS),particularly venous excess ultrasound(VExUS)is emerging as a valuable bedside tool to gain real-time hemodynamic insights.This modality,derived from hepatic vein,portal vein,and intrarenal vessel Doppler patterns,offers a scoring system for dynamic venous congestion assessment.Such an assessment can be crucial in effective management of patients with heart failure exacerbation.It facilitates diagnosis,quantification of congestion,prognostication,and monitoring the efficacy of decongestive therapy.As such,it can effectively help to manage cardiorenal syndromes in various clinical settings.Extended or eVExUS explores additional veins,potentially broadening its applications.While VExUS demonstrates promising outcomes,challenges persist,particularly in cases involving renal and liver parenchymal disease,arrhythmias,and situations of pressure and volume overload overlap.Proficiency in utilizing spectral Doppler is pivotal for clinicians to effectively employ this tool.Hence,the integration of POCUS,especially advanced applications like VExUS,into routine clinical practice necessitates enhanced training across medical specialties.展开更多
Using unbalanced panel data on 3326 Chinese listed companies from 2014 to 2021,this study investigates the impact of corporate environmental performance on China’s excess stock returns.The results show that stocks of...Using unbalanced panel data on 3326 Chinese listed companies from 2014 to 2021,this study investigates the impact of corporate environmental performance on China’s excess stock returns.The results show that stocks of companies with better environmental performance earn significantly higher excess returns,indicating the existence of green returns in the Chinese stock market.We further reveal that heightened climate-change concerns can boost the stock market’s green returns,while tightened climate policies decrease green returns by increasing long-term carbon risk.Our findings are robust to endogeneity problems and hold great implications for both investors and policymakers.展开更多
At present,the heavy academic workload of middle school students is a common problem,which is still questioned by parents,concerned by the government,and hotly debated by society.This paper summarizes the following ei...At present,the heavy academic workload of middle school students is a common problem,which is still questioned by parents,concerned by the government,and hotly debated by society.This paper summarizes the following eight aspects:the difficult content of subject courses,excessive class hours,heavy homework burden,complicated exams,overwhelming study materials,fierce subject competition,prevalent off-campus tutoring,and poor physical and mental health.Recognizing these problems can help to optimize the education and teaching environment and achieve a sustainable enrollment rate.展开更多
[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Dispos...[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.展开更多
The innovative process consists of biological unit for wastewater treatment and ozonation unit for excess sludge treatment. An aerobic membrane bioreactor(MBR) was used to remove organics and nitrogen, and an anaerobi...The innovative process consists of biological unit for wastewater treatment and ozonation unit for excess sludge treatment. An aerobic membrane bioreactor(MBR) was used to remove organics and nitrogen, and an anaerobic reactor was added to the biological unit for the release of phosphorus contained at aerobic sludge to enhance the removal of phosphorus. For the excess sludge produced in the MBR, which was fed to ozone contact column and reacted with ozone, then the ozonated sludge was returned to the MBR for further biological treatment. Experimental results showed that this process could remove organics, nitrogen and phosphorus efficiently, and the removals for COD, NH 3-N, TN and TP were 93.17%, 97.57%, 82.77% and 79.5%, respectively. Batch test indicated that the specific nitrification rate and specific denitrification rate of the MBR were 1.03 mg NH 3-N/(gMLSS·h) and 0.56 mg NOx-N/(gMLSS·h), and denitrification seems to be the rate-limiting step. Under the test conditions, the sludge concentration in the MBR was kept at 5000—6000 mg/L, and the wasted sludge was ozonated at an ozone dosage of 0.10 kgO 3/kgSS. During the experimental period of two months, no excess sludge was wasted, and a zero withdrawal of excess sludge was implemented. Through economic analysis, it was found that an additional ozonation operating cost for treatment of both wastewater and excess sludge was only 0.045 RMB Yuan(USD 0.0054)/m 3 wastewater.展开更多
The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but ...The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but also nitrogen compounds, organics, and some metal cations could be released in abundance. The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50℃ in 1 h. Except for volatile fatty acids (VFAs), comparatively little total nitrogen (TN), total organic carbon (TOC), and metal cations were released at the same time. Such results might favor further process of phosphorus recovery. VFAs were considerably released only at 50℃. Acetic, butyric, and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R2 = 0.9977, 0.9624, and 0.8908, respectively). The concentrations of Mg^2+ and K^+ increased with time and temperature during thermal treatment, but Ca^2+ decreased. The release of Mg^2+ and K^+ agreed well with TP release (R^2 = 0.9892 and 0.9476, respectively). Temperature in the experimental range had very little impact on the linear relationships, especially of Mg^2+. Moreover, the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50℃ increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.展开更多
Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosyntheti...Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (Φ PSII), application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.展开更多
Obesity has a negative effect on male reproductive function. It is associated with low testosterone levels and alteration in gonadotropin secretion. Male obesity has been linked to reduced male fertility. Data regardi...Obesity has a negative effect on male reproductive function. It is associated with low testosterone levels and alteration in gonadotropin secretion. Male obesity has been linked to reduced male fertility. Data regarding the relation of obesity to sperm parameters are conflicting in terms of the nature and magnitude of the effect. New areas of interest are emerging that can help explain the variation in study results, such as genetic polymorphism and sleep apnea. Sleep disorders have been linked to altered testosterone production and hypogonadism in men. It was also correlated to erectile dysfunction. The relation of sleep disorders to male fertility and sperm parameters remains to be investigated. Men with hypogonadism and infertility should be screened for sleep apnea. Treatment of obesity and sleep apnea improves testosterone levels and erectile function.展开更多
Domestic wastewater was treated by combined anaerobic biofilm aerobic membrane bioreactor(MBR) process, and part biomass in MBR was withdrawn to treat with ozone, then the ozonated sludge was returned to anaerobic in...Domestic wastewater was treated by combined anaerobic biofilm aerobic membrane bioreactor(MBR) process, and part biomass in MBR was withdrawn to treat with ozone, then the ozonated sludge was returned to anaerobic inlet. In aerobic MBR, MLSS and DO were controlled at 3000—3500 mg/L and 0 8 mg/L respectively. Comparing the experimental results of two stages, it was noticed that ozonation did not affect the removal efficiency for organics but had a significant influence on the removals of NH 3 N and TN. During the ozonation period of two months, no excess sludge was wasted, and a zero sludge yield was obtained.展开更多
文摘Advancements in healthcare technology have improved mortality rates and extended lifespans,resulting in a population with multiple comorbidities that complicate patient care.Traditional assessments often fall short,underscoring the need for integrated care strategies.Among these,fluid management is particularly challenging due to the difficulty in directly assessing volume status especially in critically ill patients who frequently have peripheral oedema.Effective fluid ma-nagement is essential for optimal tissue oxygen delivery,which is crucial for cellular metabolism.Oxygen transport is dependent on arterial oxygen levels,haemoglobin concentration,and cardiac output,with the latter influenced by preload,afterload,and cardiac contractility.A delicate balance of these factors ensures that the cardiovascular system can respond adequately to varying ph-ysiological demands,thereby safeguarding tissue oxygenation and overall organ function during states of stress or illness.The Venous Excess Ultrasound(VExUS)Grading System is instrumental in evaluating fluid intolerance,providing detailed insights into venous congestion and fluid status.It was originally developed to assess the risk of acute kidney injury in postoperative cardiac patients,but its versatility has enabled broader applications in nephrology and critical care settings.This mini review explores VE×US’s application and its impact on fluid management and patient outcomes in critically ill patients.
文摘Anaerobic digestion(AD)is widely employed for sludge stabilization and waste reduction.However,the slow hydrolysis process hinders methane production and leads to prolonged sludge issues.In this study,an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges.By optimizing lysozyme dosage,hydrolysis and cell lysis were maximized.Furthermore,lysozyme combined with hydrothermal pretreatment enhanced overall efficiency.Results indicate that:(1)When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment,SCOD,soluble polysaccharides,and protein content reached their maxima at 855.00,44.09,and 204.86 mg/L,respectively.This represented an increase of 85.87%,365.58%,and 259.21%compared to the untreated sludge.Threedimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region(soluble microbial product),promoting microbial metabolic activity.(2)Lysozyme combined with hydrothermal pretreatment significantly increased SCOD,soluble proteins,and polysaccharide release from sludge,reducing SCOD release time.Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release,while Group 9 released the most soluble proteins.The significance order of factors influencing SCOD,soluble proteins,and polysaccharide release is hydrothermal temperature>hydrothermal time>enzymatic digestion time.(3)The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion.Maximum SCOD consumption and cumulative gas production increased by 95.89%and 130.58%,respectively,compared to the control group,allowing gas production to conclude 3 days earlier.
基金supported by a Grant-inAid for Scientific Research(KAKENHI)from the Japan Society for the Promotion of Science(grant no.22J23183)。
文摘Climate change is a pressing global environmental issue^([1]).The gradual rise in global surface temperature is the most immediate and direct among its public health impacts.Influenza,the leading cause of human respiratory viral infections,remains a substantial public health concern owing to its considerable disease burden,particularly in highrisk groups.Mounting epidemiological evidence has linked influenza to extreme heat and cold weather^([2–4]).
基金sponsored by National Natural Science Foundation of China(52077137).
文摘Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A carbon quota trading system is established based on the baseline method,and the stepwise function is adopted to quantify the cost of excess carbon emissions;Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid(V2G)to enhance the flexible regulation ability.Aiming at the uncertainty of wind and solar output,a typical scene set is generated by combining Latin hypercube sampling with the scene reduction method.The goal is to minimize the operating cost and maximize the consumption of renewable energy,and it is solved through the CPLEX solver in the MATLAB platform.Through simulation verification of the proposed models and methods in various scenarios,the simulation results show that under the coupling of the carbon excess rate trading mechanism,the demand response mechanism,and the vehicle-to-grid interaction of electric vehicles,the total daily operating cost of the system decreases by 25.3%,reduce the dual pressure of energy consumption costs and the economic environment,and achieve the coordinated optimization of economic and ecological benefits.
基金supported by the National Natural Science Foundation of China(Nos.42272195 and 42130802)supported by the Key Applied Science and Technology Project of PetroChina(No.2023ZZ18)the Major Science and Technology Project of Changqing Oilfield(No.2023DZZ01).
文摘Deep coalbed methane(DCBM),an unconventional gas reservoir,has undergone significant advancements in recent years,sparking a growing interest in assessing pore pressure dynamics within these reservoirs.While some production data analysis techniques have been adapted from conventional oil and gas wells,there remains a gap in the understanding of pore pressure generation and evolution,particularly in wells subjected to large-scale hydraulic fracturing.To address this gap,a novel technique called excess pore pressure analysis(EPPA)has been introduced to the coal seam gas industry for the first time to our knowledge,which employs dual-phase flow principles based on consolidation theory.This technique focuses on the generation and dissipation for excess pore-water pressure(EPWP)and excess pore-gas pressure(EPGP)in stimulated deep coal reservoirs.Equations have been developed respectively and numerical solutions have been provided using the finite element method(FEM).Application of this model to a representative field example reveals that excess pore pressure arises from rapid loading,with overburden weight transferred under undrained condition due to intense hydraulic fracturing,which significantly redistributes the weight-bearing role from the solid coal structure to the injected fluid and liberated gas within artificial pores over a brief timespan.Furthermore,field application indicates that the dissipation of EPWP and EPGP can be actually considered as the process of well production,where methane and water are extracted from deep coalbed methane wells,leading to consolidation for the artificial reservoirs.Moreover,history matching results demonstrate that the excess-pressure model established in this study provides a better explanation for the declining trends observed in both gas and water production curves,compared to conventional practices in coalbed methane reservoir engineering and petroleum engineering.This research not only enhances the understanding of DCBM reservoir behavior but also offers insights applicable to production analysis in other unconventional resources reliant on hydraulic fracturing.
文摘BACKGROUND The coronavirus disease 2019(COVID-19)pandemic disrupted healthcare in the United States.AIM To investigate COVID-19-related and non-COVID-19-related death and characteristics associated with excess death among inflammatory bowel disease(IBD)decedents.METHODS We performed a register-based study using data from the National Vital Statistics System,which reports death data from over 99%of the United States population,from January 1,2006 through December 31,2021.IBD-related deaths among adults 25 years and older were stratified by age,sex,race/ethnicity,place of death,and primary cause of death.Predicted and actual age-standardized mortality rates(ASMRs)per 100000 persons were compared.RESULTS 49782 IBD-related deaths occurred during the study period.Non-COVID-19-related deaths increased by 13.14%in 2020 and 18.12%in 2021[2020 ASMR:1.55 actual vs 1.37 predicted,95%confidence interval(CI):1.26-1.49;2021 ASMR:1.63 actual vs 1.38 predicted,95%CI:1.26-1.49].In 2020,non-COVID-19-related mortality increased by 17.65%in ulcerative colitis(UC)patients between the ages of 25 and 65 and 36.36%in non-Hispanic black(NHB)Crohn’s disease(CD)patients.During the pandemic,deaths at home or on arrival and at medical facilities as well as deaths due to neoplasms also increased.CONCLUSION IBD patients suffered excess non-COVID-19-related death during the pandemic.Excess death was associated with younger age among UC patients,and with NHB race among CD patients.Increased death at home or on arrival and due to neoplasms suggests that delayed presentation and difficulty accessing healthcare may have led to increased IBD mortality.
基金supported by the National Natural Science Foundation of China(No.32172932)the Key Program of Natural Science Foundation of Heilongjiang Province of China(No.ZD2021C003)+2 种基金the China Agriculture Research System of MOF and MARA(No.CARS-35)the Distinguished Professor of Longjiang Scholars Support Project(No.T201908)the Heilongjiang Touyan Innovation Team Program。
文摘Birth defects have become a public health concern.The hazardous environmental factors exposure to embryos could increase the risk of birth defects.Cadmium,a toxic environmental factor,can cross the placental barrier during pregnancy.Pregnant woman may be subjected to cadmium before taking precautionary protective actions.However,the link between birth defects and cadmium remains obscure.Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses.Cadmium exposure activated the p53 via enhancing the adenosine 5‘-monophosphate(AMP)-activated protein kinase(AMPK)and reactive oxygen species'(ROS)level.And cadmium decreases the level of Paired box 3(Pax3)and murine double minute 2(Mdm2),disrupting the process of p53 ubiquitylation.And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses.Excessive apoptosis led to the failure of neural tube closure.The study emphasizes that environmental materials may increase the health risk for embryos.Cadmium caused the failure of neural tube closure during early embryotic day.Pregnant women may be exposed by cadmium before taking precautionary protective actions,because of cadmium concentration-containing foods and environmental tobacco smoking.This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.
基金the support from the National Natural Science Foundation of China(Grant Nos.12374202 and 12004001)Anhui Projects(Grant Nos.2022AH020009,S020218016,and Z010118169)Hefei City(Grant No.Z020132009)。
文摘Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law scaling:D(ω)~ω~γ.However,it remains debated on the value of γ at low frequencies below the first phonon-like mode in finitesize glasses.Early simulation studies reported γ=4 at low frequencies in two-(2D),three-(3D),and four-dimensional(4D)glasses,whereas recent observations in 2D and 3D glasses suggested γ=3.5 in a lower-frequency regime.It is uncertain whether the low-frequency scaling of D(ω)~ω^(3.5) could be generalized to 4D glasses.Here,we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses.It is found that the system size dependence of D(ω) below the first phonon-like mode varies with spatial dimensions:D(ω) increases in2D glasses but decreases in 3D and 4D glasses as the system size increases.Furthermore,we demonstrate that the ω^(3.5)scaling,rather than the ω~4 scaling,works in the lowest-frequency regime accessed in 4D glasses,regardless of interaction potentials and system sizes examined.Therefore,our findings in 4D glasses,combined with previous results in 2D and 3D glasses,suggest a common low-frequency scaling of D(ω)~ ω^3.5) below the first phonon-like mode across different spatial dimensions,which would inspire further theoretical studies.
文摘Point-of-care ultrasonography(POCUS),particularly venous excess ultrasound(VExUS)is emerging as a valuable bedside tool to gain real-time hemodynamic insights.This modality,derived from hepatic vein,portal vein,and intrarenal vessel Doppler patterns,offers a scoring system for dynamic venous congestion assessment.Such an assessment can be crucial in effective management of patients with heart failure exacerbation.It facilitates diagnosis,quantification of congestion,prognostication,and monitoring the efficacy of decongestive therapy.As such,it can effectively help to manage cardiorenal syndromes in various clinical settings.Extended or eVExUS explores additional veins,potentially broadening its applications.While VExUS demonstrates promising outcomes,challenges persist,particularly in cases involving renal and liver parenchymal disease,arrhythmias,and situations of pressure and volume overload overlap.Proficiency in utilizing spectral Doppler is pivotal for clinicians to effectively employ this tool.Hence,the integration of POCUS,especially advanced applications like VExUS,into routine clinical practice necessitates enhanced training across medical specialties.
基金Supports from the National Natural Science Foundation of China under Grant Nos.72348003,72022020,72203016,71974181 and 71974159 are acknowledged.
文摘Using unbalanced panel data on 3326 Chinese listed companies from 2014 to 2021,this study investigates the impact of corporate environmental performance on China’s excess stock returns.The results show that stocks of companies with better environmental performance earn significantly higher excess returns,indicating the existence of green returns in the Chinese stock market.We further reveal that heightened climate-change concerns can boost the stock market’s green returns,while tightened climate policies decrease green returns by increasing long-term carbon risk.Our findings are robust to endogeneity problems and hold great implications for both investors and policymakers.
基金2023 Project of the National Office of Science Planning Project Management“Research on Effective Measures to Reduce the Heavy Workload of Middle School Students”(23BXJ32640)。
文摘At present,the heavy academic workload of middle school students is a common problem,which is still questioned by parents,concerned by the government,and hotly debated by society.This paper summarizes the following eight aspects:the difficult content of subject courses,excessive class hours,heavy homework burden,complicated exams,overwhelming study materials,fierce subject competition,prevalent off-campus tutoring,and poor physical and mental health.Recognizing these problems can help to optimize the education and teaching environment and achieve a sustainable enrollment rate.
基金Supported by Action Programs of Service Business of Scientists and Engineers in MOST(2009GJA00026)Science and Technology Project of Beijing Municipal Bureau of Agriculture(2010020101)+1 种基金Science and Technology project of Beijing Municipal Bureau of Agriculture(011050465100002)Science and Technology Project of Beijing Academy of Agricultural and Forestry Sciences(2010A016)~~
文摘[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.
文摘The innovative process consists of biological unit for wastewater treatment and ozonation unit for excess sludge treatment. An aerobic membrane bioreactor(MBR) was used to remove organics and nitrogen, and an anaerobic reactor was added to the biological unit for the release of phosphorus contained at aerobic sludge to enhance the removal of phosphorus. For the excess sludge produced in the MBR, which was fed to ozone contact column and reacted with ozone, then the ozonated sludge was returned to the MBR for further biological treatment. Experimental results showed that this process could remove organics, nitrogen and phosphorus efficiently, and the removals for COD, NH 3-N, TN and TP were 93.17%, 97.57%, 82.77% and 79.5%, respectively. Batch test indicated that the specific nitrification rate and specific denitrification rate of the MBR were 1.03 mg NH 3-N/(gMLSS·h) and 0.56 mg NOx-N/(gMLSS·h), and denitrification seems to be the rate-limiting step. Under the test conditions, the sludge concentration in the MBR was kept at 5000—6000 mg/L, and the wasted sludge was ozonated at an ozone dosage of 0.10 kgO 3/kgSS. During the experimental period of two months, no excess sludge was wasted, and a zero withdrawal of excess sludge was implemented. Through economic analysis, it was found that an additional ozonation operating cost for treatment of both wastewater and excess sludge was only 0.045 RMB Yuan(USD 0.0054)/m 3 wastewater.
文摘The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but also nitrogen compounds, organics, and some metal cations could be released in abundance. The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50℃ in 1 h. Except for volatile fatty acids (VFAs), comparatively little total nitrogen (TN), total organic carbon (TOC), and metal cations were released at the same time. Such results might favor further process of phosphorus recovery. VFAs were considerably released only at 50℃. Acetic, butyric, and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R2 = 0.9977, 0.9624, and 0.8908, respectively). The concentrations of Mg^2+ and K^+ increased with time and temperature during thermal treatment, but Ca^2+ decreased. The release of Mg^2+ and K^+ agreed well with TP release (R^2 = 0.9892 and 0.9476, respectively). Temperature in the experimental range had very little impact on the linear relationships, especially of Mg^2+. Moreover, the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50℃ increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.
基金supported by the National Key Technologies R&D Program during the 11th Five-Year Plan period of China (2008BADA4B05)the Excellent Young Scientist Foundation of Shandong Province,China (2006BS06019)
文摘Effects of silicon on photosynthetic parameters and antioxidant enzymes of chloroplast in cucumber seedlings under excess Mn were studied. Compared with the control, excess Mn significantly inhibited net photosynthetic rate (Pn), stomatal conductance, as well as the maximum yield of the photosystem II photochemical reactions (Fv/Fm) and the quantum yield of photosysytem II electron transport (Φ PSII), application of Si reversed the negative effects of excess Mn. In the further investigation, it was obtained that application of Si significantly increased the activities of enzymes related with ascorbate-glutathione cycle including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber chloroplast under excess Mn, this could be responsible for the lower accumulation of H2O2 and lower lipid peroxidation of chloroplast induced by Mn, and resulted in keeping higher photosynthesis.
文摘Obesity has a negative effect on male reproductive function. It is associated with low testosterone levels and alteration in gonadotropin secretion. Male obesity has been linked to reduced male fertility. Data regarding the relation of obesity to sperm parameters are conflicting in terms of the nature and magnitude of the effect. New areas of interest are emerging that can help explain the variation in study results, such as genetic polymorphism and sleep apnea. Sleep disorders have been linked to altered testosterone production and hypogonadism in men. It was also correlated to erectile dysfunction. The relation of sleep disorders to male fertility and sperm parameters remains to be investigated. Men with hypogonadism and infertility should be screened for sleep apnea. Treatment of obesity and sleep apnea improves testosterone levels and erectile function.
文摘Domestic wastewater was treated by combined anaerobic biofilm aerobic membrane bioreactor(MBR) process, and part biomass in MBR was withdrawn to treat with ozone, then the ozonated sludge was returned to anaerobic inlet. In aerobic MBR, MLSS and DO were controlled at 3000—3500 mg/L and 0 8 mg/L respectively. Comparing the experimental results of two stages, it was noticed that ozonation did not affect the removal efficiency for organics but had a significant influence on the removals of NH 3 N and TN. During the ozonation period of two months, no excess sludge was wasted, and a zero sludge yield was obtained.