期刊文献+
共找到416篇文章
< 1 2 21 >
每页显示 20 50 100
Research on Multi-functional Excavation Trolley for Single-track Tunnel Face
1
作者 Guangming Zhang 《Journal of World Architecture》 2025年第3期146-158,共13页
The construction of the tunnel face is a critical aspect of tunnel excavation,and its supporting equipment mainly includes drilling jumbos,arch installation trolleys,wet spraying manipulators,and anchor bolt trolleys.... The construction of the tunnel face is a critical aspect of tunnel excavation,and its supporting equipment mainly includes drilling jumbos,arch installation trolleys,wet spraying manipulators,and anchor bolt trolleys.To address the issues of high construction costs and the need to replace equipment for different processes,this paper designs an economical and practical multi-functional integrated trolley based on engineering cases.This trolley is suitable for various construction methods such as full-face excavation and benching method,and integrates functions such as drilling and blasting holes,anchor bolt holes,advance grouting holes,pipe roof construction,charging,anchor bolt installation and grouting,and arch mesh installation.It reduces the number of operators,improves the tunnel working environment,lowers construction costs,and enhances construction efficiency. 展开更多
关键词 Single-track tunnel Tunnel face excavation trolley Full-face excavation Benching method
在线阅读 下载PDF
Reliability analysis of anti-pull piles under excavation
2
作者 徐志军 郑俊杰 +1 位作者 边晓亚 刘勇 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期203-208,共6页
The impact of excavation on the reliability of anti- pull piles is studied, and three cases of reliability analysis, named reliability of ultimate limit state (ULS), reliability of serviceability limit state (SLS)... The impact of excavation on the reliability of anti- pull piles is studied, and three cases of reliability analysis, named reliability of ultimate limit state (ULS), reliability of serviceability limit state (SLS) and reliability of system (SYS) are studied. The reduction factor of the pile capacity is used to calculate the reliability indices for the three cases. The ratio ξ of the pile capacity of SLS to the pile capacity of ULS has a significant influence on the reliability indices of SLS and SYS. The mean value μξ of the ratio ξ: is considered as a random variable to study the reliability indices of SLS and SYS. The numerical example demonstrates that the excavation depth and the excavation diameter are proved to have significant influences on the reduction factor of the pile capacity and the reliability indices. The reliability indices decrease with the increase in the excavation depth, and the excavation diameter has a considerable influence on the reliability index when the excavation is relatively deep. In addition, μξ has a significant influence on the reliability indices of SLS and SYS. For a more accurate estimation of μξ, further research should be conducted to study μξ. 展开更多
关键词 excavation reliability anti-pull piles reduction factor excavation depth excavation diameter
在线阅读 下载PDF
A deep transfer learning model for the deformation of braced excavations with limited monitoring data 被引量:1
3
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections Transfer learning Deep learning Finite element simulation
在线阅读 下载PDF
Analysis on the dust prevention mechanism of air curtain in fully mechanized excavation tunnel 被引量:1
4
作者 Hao Wang Chuangye Xin +4 位作者 Shouqing Lu Yongliang Zhang Zhanyou Sa Jinxu Tao Zhuang Liu 《International Journal of Coal Science & Technology》 2025年第1期152-165,共14页
Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extrac... Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extraction velocity(v_(e))and extraction distance(L)in the formation process of air curtain,the numerical simulation method was used to analyze the rules of airflow structure evolution and the diffusion characteristics of dust particles in fully mechanized excavation tunnel.The results indicate that as v_(r) and v_(e) increase,the migration path of the wall jet of the air curtain changes into an axial direction;as L decreases,the migration distance increases accordingly.These phenomena make the airflow distribution in the working face tends to be uniform.The dust diffusion distance reduces as well,wherein,the range of the discrete area of dust particles decreases sharply,until all dust particles are concentrated in the accumulation area.On this basis,the v_(r),v_(e) and L were optimized and applied in the 63_(up) 08 fully mechanized working face.By the application of the optimal parameters,the average dust removal efficiency at the driver’s position increased by 71%.The dust concentration was reduced and the working environment had been improved effectively. 展开更多
关键词 Air curtain Dust prevention mechanism Airflow structure evolution Dust diffusion Fully mechanized excavation tunnel
在线阅读 下载PDF
An enhanced stability evaluation system for entry-type excavations:Utilizing a hybrid bagging-SVM model,GP and kriging techniques 被引量:1
5
作者 Shuai Huang Jian Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2360-2373,共14页
In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical... In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback. 展开更多
关键词 Entry-type excavations Critical span graph Stability evaluation Machine learning Support vector machine
在线阅读 下载PDF
Formation of the Soil Arch and Load Transfer Mechanism of a Slope due to Excavation by 3D Particle Flow Code Simulation
6
作者 Chunyan Tang Huiming Tang +3 位作者 Kun Fang Xuexue Su Sixuan Sun Minghao Miao 《Journal of Earth Science》 2025年第5期1977-1988,共12页
The soil arching effect is an important factor affecting the internal load transfer of excavation-induced slopes.Physical model tests are usually used for studying the soil arching effect.Although physical model tests... The soil arching effect is an important factor affecting the internal load transfer of excavation-induced slopes.Physical model tests are usually used for studying the soil arching effect.Although physical model tests can monitor local point loads to demonstrate changes in local stresses,changes in force chains inside slopes are rarely demonstrated by physical modelling,which restricts the understanding of load transfer.To explore overall changes in stresses in slopes from a more microscopic perspective,a numerical simulation of the slope under excavation was carried out.Using built-in code and fish function programming in PFC^(3D),the slope model was developed.Monitoring areas were set up to monitor the changes in stresses and force chains during excavation.The simulation results show that excavation width affects the size of deformation area,and the deformation area expands as excavation width increases.Excavation causes load transfer and the formation of soil arching in the slope.A mechanism is proposed to explain the effect of excavation on soil arching formation and load transfer.The numerical simulation is important for revealing the load transfer of slopes during excavation,and the research results have practical value for the prevention and mitigation of landslides caused by excavation. 展开更多
关键词 PFC^(3D) arching effect excavation SAND SLOPE engineering geology
原文传递
Longitudinal structural vulnerability analysis of shield tunnels under adjacent excavation disturbances
7
作者 PENG Zhu SHI Cheng-hua +2 位作者 WANG Zu-xian LEI Ming-feng PENG Li-min 《Journal of Central South University》 2025年第6期2256-2272,共17页
This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled a... This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure. 展开更多
关键词 shield tunnel foundation pit excavation foundation variability random field VULNERABILITY
在线阅读 下载PDF
Large deformation problems arising from deep excavation in silt strata:A case study in Shenzhen,China
8
作者 Xuefeng Ou Wei Liao +2 位作者 Xiangcou Zheng Guofu Yang Ashraf S.Osman 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2576-2589,共14页
Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the unde... Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the underlying mechanisms and key aspects associated with large deformation problems induced by deep excavation in silt strata in Shenzhen,China.The monitoring results reveal that,due to the weak property and creep effect of the silt strata,the maximum wall deflection in the first excavated section(Section 1)exceeds its controlled value at more than 93%of measurement points,reaching a peak value of 137.46 mm.Notably,the deformation exhibits prolonged development characteristics,with the diaphragm wall deflections contributing to 39%of the overall deformation magnitude during the construction of the base slab.Subsequently,numerical simulations are carried out to analyze and assess the primary factors influencing excavation-induced deformations,following the observation of large deformations.The simulations indicate that the low strength of the silt soil is a pivotal factor that results in significant deformations.Furthermore,the flexural stiffness of the diaphragm walls exerts a notable influence on the development of deformations.To address these concerns,an optimization study of potential treatment measures was performed during the subsequent excavation of Section 2.The combined treatment approach,which comprises the reinforcement of the silt layer within the excavation and the increase in the thickness of the diaphragm walls,has been demonstrated to offer an economically superior solution for the handling of thick silt strata.This approach has the effect of reducing the lateral wall displacement by 83.1%and the ground settlement by 70.8%,thereby ensuring the safe construction of the deep excavation. 展开更多
关键词 Silt strata Deep excavation Large deformation Deformation mechanism Treatment measures
在线阅读 下载PDF
Elastic and elastoplastic analysis of surrounding rock in CAES chambers considering excavation-induced centripetal exponential reduction in mechanical properties
9
作者 Zeyuan Sun Cheng Zhao +4 位作者 Jinquan Xing Ran Huang Qinyuan Luo Huiguan Chen Jialun Niu 《Deep Underground Science and Engineering》 2025年第4期582-596,共15页
Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluat... Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluating the elastic and elastoplastic stress fields in CAES chambers surrounding rock,incorporating excavation-induced centripetal reduction of rock stiffness and strength.A proposed model introduces exponential reduction functions for the deformation modulus and cohesion within the excavation disturbed zone(EDZ),deriving analytical solutions for both elastic and elastoplastic stress distributions.A case study of a practical engineering project validates the theoretical formulations through comparative analysis with numerical simulations,demonstrating strong consistency in stress field predictions.The main findings indicate that the EDZ causes a significant non-monotonic variation in the elastic hoop stress distribution.While it does not significantly affect the range of the plastic zone,it reduces the permeability and bearing capacity of the surrounding rock,highlighting the necessity of integrating the centripetal reduction of mechanical properties and strictly controlling excavation-induced damage in the design practice.Furthermore,this study provides a new approach for the selection of lining materials and structural design for CAES chambers:the radial stiffness smoothly increases to match the EDZ surrounding rock stiffness,and the cohesion exceeds that of the surrounding rock,which can significantly optimize the overall system's stress distribution.This study provides valuable insights and references for the selection of excavation methods,stability assessment,and support structure design for CAES engineering,and holds significant importance for improving the CAES technology system. 展开更多
关键词 analytical solution compressed air energy storage excavation damage elastoplastic analysis LINING numerical simulation
原文传递
Effect of adjacent excavation on the mechanical response of proximal soil and tunnels in normally consolidated clay:centrifuge model testing and numerical simulation
10
作者 Ren-Peng CHEN Yong XU +1 位作者 Han-Lin WANG Fan-Yan MENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期931-949,共19页
Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to ... Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to these excavations is important for efficient and safe underground construction.However,previous investigations of this issue have predominantly made assumptions of plane-strain conditions and normal gravity states,and focused on the performance of tunnels affected by excavation and unloading in sandy strata.In this study,a 3D centrifuge model test is conducted to investigate the influence of excavation on an adjacent existing tunnel in normally consolidated clay.The testing results indicate that the excavation has a significant impact on the horizontal deformation of the retaining wall and tunnel.Moreover,the settlements of the ground surface and the tunnel are mainly affected by the long-term period after excavation.The excavation is found to induce ground movement towards the pit,resulting in prolonged fluctuations in pore water pressure and lateral earth pressure.The testing results are compared with numerical simulations,achieving consistency.A numerical parametric study on the tunnel location shows that when the tunnel is closer to the retaining wall,the decreases in lateral earth pressure and pore water pressure during excavation are more pronounced. 展开更多
关键词 Centrifuge model Adjacent excavation TUNNEL Retaining wall Normally consolidated clay
原文传递
Research on Multi-Functional Excavation Trolley for High-speed Railway Double-Track Tunnel
11
作者 Guangming Zhang 《Journal of Architectural Research and Development》 2025年第3期165-171,共7页
With the rapid development of high-speed railway tunnel construction mileage and technology,the construction of the tunnel face is a key part of tunnel construction in high-speed railway tunnel projects.As mechanizati... With the rapid development of high-speed railway tunnel construction mileage and technology,the construction of the tunnel face is a key part of tunnel construction in high-speed railway tunnel projects.As mechanization and intelligence levels continue to increase,supporting equipment mainly includes rock drilling trolleys,arch installation trolleys,wet spraying robots,anchor trolleys,etc.To address the issues of high construction costs and the need to replace equipment for different processes,this paper designs an economical and practical multi-functional integrated trolley for high-speed railway double-track tunnels based on engineering cases.This trolley can adapt to various tunnel face excavation methods such as the full-face method and the bench method,enabling integrated functions such as drilling and blasting holes,anchor holes,advance grouting holes,pipe roof construction,charging,anchor installation and grouting,and arch mesh installation.This reduces the number of operators,improves the working environment of high-speed railway tunnels,lowers construction costs,and enhances construction efficiency. 展开更多
关键词 High-speed railway Double-track tunnel excavation trolley Full-face method Bench method
在线阅读 下载PDF
Deep learning approaches for estimating maximum wall deflection in excavations with inconsistent clay stratigraphy
12
作者 Vinh V.Le HongGiang Nguyen Nguyen Huu Ngu 《Artificial Intelligence in Geosciences》 2025年第2期71-85,共15页
This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations.Six major geotechnical parameters were studied.Statistical methods,such ... This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations.Six major geotechnical parameters were studied.Statistical methods,such as pair plots and Pearson correlation,highlighted excavation depth(correlation coefficient=0.82)as the most significant factor.For method prediction,five deep learning models(CNN,LSTM,BiLSTM,CNN-LSTM,and CNN-BiLSTM)were built.The CNN-BiLSTM model excelled in training performance(R^(2)=0.98,RMSE=0.02),while BiLSTM reached superior testing results(R^(2)=0.85,RMSE=0.06),suggesting greater generalization ability.Based on the feature importance analysis from model weights,excavation depth,stiffness ratio,and bracing spacing were ranked as the highest contributors.This point verified a lack of prediction bias on residual plots and high model agreement with measured values on Taylor diagrams(correlation coefficient 0.92).The effectiveness of integrated techniques was reliably assured for predicting wall deformation.This approach facilitates more accurate and efficient geotechnical design and provides engineers with improved tools for risk evaluation and decision-making in deep excavation projects. 展开更多
关键词 Deep learning Forecasting Wall deflection excavation
在线阅读 下载PDF
A physics-constrained neural network for predicting excavationinduced ground surface settlement in clay
13
作者 Yifeng Yang Shaoming Liao +3 位作者 Bak Koon Teoh Zewen Li Mengbo Liu Lisheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2665-2681,共17页
Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all u... Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all under the limitations of either imprecise theories or insufficient data.In the present study,we proposed a physics-constrained neural network(PhyNN)for predicting excavation-induced GSS to fully integrate the theory of elasticity with observations and make full use of the strong fitting ability of neural networks(NNs).This model incorporates an analytical solution as an additional regularization term in the loss function to guide the training of NN.Moreover,we introduced three trainable parameters into the analytical solution so that it can be adaptively modified during the training process.The performance of the proposed PhyNN model is verified using data from a case study project.Results show that our PhyNN model achieves higher prediction accuracy,better generalization ability,and robustness than the purely data-driven NN model when confronted with data containing noise and outliers.Remarkably,by incorporating physical constraints,the admissible solution space of PhyNN is significantly narrowed,leading to a substantial reduction in the need for the amount of training data.The proposed PhyNN can be utilized as a general framework for integrating physical constraints into data-driven machine-learning models. 展开更多
关键词 Data-physics collaboratively driven excavation Ground surface settlement(GSS) Physics-constrained loss function Robustness Generalization ability
在线阅读 下载PDF
An Improved Local RBF Collocation Method for 3D Excavation Deformation Based on Direct Method and Mapping Technique
14
作者 Cheng Deng Hui Zheng +2 位作者 Liangyong Gong Rongping Zhang Mengqi Wang 《Computer Modeling in Engineering & Sciences》 2025年第2期2147-2172,共26页
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen... Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency. 展开更多
关键词 Radial basis function collocation method irregular shape excavation elastic-plasticity
在线阅读 下载PDF
Numerical Simulation of M-Shaped Multi-Row Pile-Supported Foundation Pit Excavation Based on ABAQUS
15
作者 Meng Chen Chuanteng Huang +3 位作者 Shuang Pu Jilun Cai Zuocai Li Yufu Huang 《Journal of World Architecture》 2025年第3期55-63,共9页
The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation... The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems. 展开更多
关键词 M-shaped multi-row piles Foundation pit excavation Numerical simulation ABAQUS
在线阅读 下载PDF
3D numerical simulation of a centrifuge test on a soil-nailed wall supporting an excavation under cyclic loading
16
作者 Javad Jalili Mohammad Moradi 《Earthquake Engineering and Engineering Vibration》 2025年第2期381-394,共14页
The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of supp... The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results. 展开更多
关键词 centrifuge test nailed wall numerical analysis excavation support
在线阅读 下载PDF
Compensation control and design methods for excavations in deep soft rocks
17
作者 Qi Wang Xuepeng Wang +2 位作者 Bei Jiang Manchao He Lingfeng Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3747-3761,共15页
During the excavation and support process in deep soft rocks,complex conditions such as high stress and strong disturbance can be encountered.The complex conditions can cause failure of the support system.Aiming at st... During the excavation and support process in deep soft rocks,complex conditions such as high stress and strong disturbance can be encountered.The complex conditions can cause failure of the support system.Aiming at stability control in deep soft rocks,we proposed the excavation compensation theory.A new high strength and high toughness material was developed.The breaking load and elongation of the new material are 1.59 and 1.78 times that of common bolt materials.To overcome the problem that the CABLE element in FLAC^(3D) cannot simulate failure of support structures,the numerical model for the whole process of force-breaking-anchorage failure simulation(FBAS)for bolts(cables)was established.The numerical experiments on the excavation compensation control of deep soft rock were carried out.The excavation compensation control mechanism of high strength and high toughness material was clarified.Compared with the common support scheme,the highly prestressed support has a maximum increase of 90.24%in radial stress compensation rate and a maximum increase of 67.85%in deformation control rate.The results illustrate the rationality of the excavation compensation theory.The compensation design method of excavations in deep soft rocks was proposed and applied in a deep soft rock chamber.The monitoring indicated that the maximum surrounding rock deformation is 180 mm,reduced by 64%compared to the common support.The deformation of the chamber was controlled and the surrounding rock was stable. 展开更多
关键词 Deep soft rock excavation compensation High strength and high toughness material FBAS numerical model Control design
在线阅读 下载PDF
Experimental investigation on the stability of shield tunnel excavation face in upper loose and lower dense water-rich strata
18
作者 Pengfei LI Chuang WANG +3 位作者 Xiaopu CUI Qing XU Zhaoguo GE Shaohua LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期471-491,共21页
Maintaining the stability of the excavation face is key for ensuring the safety of underwater shield tunnel construction.However,the majority of current studies on the stability of excavation face focus on the homogen... Maintaining the stability of the excavation face is key for ensuring the safety of underwater shield tunnel construction.However,the majority of current studies on the stability of excavation face focus on the homogeneous strata,with limited research conducted on the upper loose and lower dense strata.Active instability tests are conducted in this study,in concert with the digital image correlation(DIC)technique,to investigate the effects of different water pressure ratios in upper loose and lower dense water-rich strata.The accuracy of these model tests is verified using numerical simulations.The results indicate that as water pressure ratio decreases,there is an increase in both the peak displacement of surface settlement and the seepage path range of water ahead of the excavation face expands.In contrast,decreasing water pressure ratio will break the limit equilibrium state of the strata faster,cause the earth pressure on the cutterhead to change more rapidly,and increase the instability range of the strata. 展开更多
关键词 Shield tunnel Upper loose and lower dense strata excavation face stability Water pressure ratio
原文传递
A spatiotemporal data mining method for advanced prediction and assessment of large combined excavation-induced wall deformations and risks
19
作者 Linhong Tang Shaoming Liao +2 位作者 Yifeng Yang Yaoyao Fan Zhi Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2758-2777,共20页
A holistic and precise assessment of retaining wall deformations is critical for on-site risk management of large combined deep excavation projects,where the risk-related points are highly dispersed,evolving,and inter... A holistic and precise assessment of retaining wall deformations is critical for on-site risk management of large combined deep excavation projects,where the risk-related points are highly dispersed,evolving,and interacting.Despite extensive exploration of this topic in previous studies,the omission of intricate spatiotemporal characteristics of wall deformations has resulted in diminished prediction accuracy and stability.To mitigate this deficiency,a spatiotemporal characteristics matrix for all data points and time series was first generated for a deep excavation scenario and used as input for a new hybrid model that combines convolutional neural network(CNN)and long short-term memory(LSTM)with incorporated attention mechanism(CNN-LSTM-Att),which enables the cross-learning mechanism and improves interpretability.In addition,by leveraging the attention weight,a new risk assessment index for retaining wall deformations across various scenarios was formulated.Then the proposed method was applied in a large combined deep excavation in Shanghai,China.The results show that:(1)The incorporation of fedin characteristic data and the attention mechanism enables the proposed method to produce satisfactory prediction results for the holistic spatiotemporal distribution of a large combined excavation;(2)Compared with other published models,the proposed model shows much better prediction accuracy,interpretability,and stability,especially in medium-and long-term predictions;and(3)The new risk assessment index serves as a reliable decision-making tool for assessing the risk evolution of retaining wall deformations and provides valuable guidance for effective risk management in multi-scenario excavation projects. 展开更多
关键词 Attention mechanism Spatiotemporal characteristics matrix Large combined deep excavation Deformation risk
在线阅读 下载PDF
Stability monitoring and evaluation of the modeled test square for prehistoric earthen sites during excavation period 被引量:3
20
作者 谌文武 戴鹏飞 +3 位作者 张景科 陈鹏飞 郭青林 孙满利 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期464-471,共8页
In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in lengt... In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in length, and an archaeological column in the middle was excavated by means of a top-down excavation technique. To investigate the stability performance of the modeled test square and the associated effect on the adjacent area, a real-time comprehensive instrumentation program was conducted during the excavation. Field observations included ground settlements, lateral displacement, pore pressure and underground water level. Monitoring data indicates that the ground settlement induced by dewatering and unloading action basically decreases with the increase of the distance away from the pit edge, and the lateral displacements at four sides showa nonlinear variation along the depth. The maximum value is far below the acceptable value regulated by the related standard,which validates the stability of the modeled test square during excavation. Variations of pore pressure and water level suggest that long-term stability should be paid more attention due to the slowconsolidation of soft soil. Meanwhile, it is proved that the step shape of the wall can resist lateral displacement more effectively than the vertical shape of wall. This case study provides insights into the real archaeological excavation in Hangzhou, in particular Liangzhu prehistoric earthen sites. 展开更多
关键词 prehistoric earthen sites archaeological excavation test square stability monitoring
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部