The construction of the tunnel face is a critical aspect of tunnel excavation,and its supporting equipment mainly includes drilling jumbos,arch installation trolleys,wet spraying manipulators,and anchor bolt trolleys....The construction of the tunnel face is a critical aspect of tunnel excavation,and its supporting equipment mainly includes drilling jumbos,arch installation trolleys,wet spraying manipulators,and anchor bolt trolleys.To address the issues of high construction costs and the need to replace equipment for different processes,this paper designs an economical and practical multi-functional integrated trolley based on engineering cases.This trolley is suitable for various construction methods such as full-face excavation and benching method,and integrates functions such as drilling and blasting holes,anchor bolt holes,advance grouting holes,pipe roof construction,charging,anchor bolt installation and grouting,and arch mesh installation.It reduces the number of operators,improves the tunnel working environment,lowers construction costs,and enhances construction efficiency.展开更多
The impact of excavation on the reliability of anti- pull piles is studied, and three cases of reliability analysis, named reliability of ultimate limit state (ULS), reliability of serviceability limit state (SLS)...The impact of excavation on the reliability of anti- pull piles is studied, and three cases of reliability analysis, named reliability of ultimate limit state (ULS), reliability of serviceability limit state (SLS) and reliability of system (SYS) are studied. The reduction factor of the pile capacity is used to calculate the reliability indices for the three cases. The ratio ξ of the pile capacity of SLS to the pile capacity of ULS has a significant influence on the reliability indices of SLS and SYS. The mean value μξ of the ratio ξ: is considered as a random variable to study the reliability indices of SLS and SYS. The numerical example demonstrates that the excavation depth and the excavation diameter are proved to have significant influences on the reduction factor of the pile capacity and the reliability indices. The reliability indices decrease with the increase in the excavation depth, and the excavation diameter has a considerable influence on the reliability index when the excavation is relatively deep. In addition, μξ has a significant influence on the reliability indices of SLS and SYS. For a more accurate estimation of μξ, further research should be conducted to study μξ.展开更多
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres...The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.展开更多
Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extrac...Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extraction velocity(v_(e))and extraction distance(L)in the formation process of air curtain,the numerical simulation method was used to analyze the rules of airflow structure evolution and the diffusion characteristics of dust particles in fully mechanized excavation tunnel.The results indicate that as v_(r) and v_(e) increase,the migration path of the wall jet of the air curtain changes into an axial direction;as L decreases,the migration distance increases accordingly.These phenomena make the airflow distribution in the working face tends to be uniform.The dust diffusion distance reduces as well,wherein,the range of the discrete area of dust particles decreases sharply,until all dust particles are concentrated in the accumulation area.On this basis,the v_(r),v_(e) and L were optimized and applied in the 63_(up) 08 fully mechanized working face.By the application of the optimal parameters,the average dust removal efficiency at the driver’s position increased by 71%.The dust concentration was reduced and the working environment had been improved effectively.展开更多
In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical...In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.展开更多
The soil arching effect is an important factor affecting the internal load transfer of excavation-induced slopes.Physical model tests are usually used for studying the soil arching effect.Although physical model tests...The soil arching effect is an important factor affecting the internal load transfer of excavation-induced slopes.Physical model tests are usually used for studying the soil arching effect.Although physical model tests can monitor local point loads to demonstrate changes in local stresses,changes in force chains inside slopes are rarely demonstrated by physical modelling,which restricts the understanding of load transfer.To explore overall changes in stresses in slopes from a more microscopic perspective,a numerical simulation of the slope under excavation was carried out.Using built-in code and fish function programming in PFC^(3D),the slope model was developed.Monitoring areas were set up to monitor the changes in stresses and force chains during excavation.The simulation results show that excavation width affects the size of deformation area,and the deformation area expands as excavation width increases.Excavation causes load transfer and the formation of soil arching in the slope.A mechanism is proposed to explain the effect of excavation on soil arching formation and load transfer.The numerical simulation is important for revealing the load transfer of slopes during excavation,and the research results have practical value for the prevention and mitigation of landslides caused by excavation.展开更多
This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled a...This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure.展开更多
Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the unde...Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the underlying mechanisms and key aspects associated with large deformation problems induced by deep excavation in silt strata in Shenzhen,China.The monitoring results reveal that,due to the weak property and creep effect of the silt strata,the maximum wall deflection in the first excavated section(Section 1)exceeds its controlled value at more than 93%of measurement points,reaching a peak value of 137.46 mm.Notably,the deformation exhibits prolonged development characteristics,with the diaphragm wall deflections contributing to 39%of the overall deformation magnitude during the construction of the base slab.Subsequently,numerical simulations are carried out to analyze and assess the primary factors influencing excavation-induced deformations,following the observation of large deformations.The simulations indicate that the low strength of the silt soil is a pivotal factor that results in significant deformations.Furthermore,the flexural stiffness of the diaphragm walls exerts a notable influence on the development of deformations.To address these concerns,an optimization study of potential treatment measures was performed during the subsequent excavation of Section 2.The combined treatment approach,which comprises the reinforcement of the silt layer within the excavation and the increase in the thickness of the diaphragm walls,has been demonstrated to offer an economically superior solution for the handling of thick silt strata.This approach has the effect of reducing the lateral wall displacement by 83.1%and the ground settlement by 70.8%,thereby ensuring the safe construction of the deep excavation.展开更多
Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluat...Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluating the elastic and elastoplastic stress fields in CAES chambers surrounding rock,incorporating excavation-induced centripetal reduction of rock stiffness and strength.A proposed model introduces exponential reduction functions for the deformation modulus and cohesion within the excavation disturbed zone(EDZ),deriving analytical solutions for both elastic and elastoplastic stress distributions.A case study of a practical engineering project validates the theoretical formulations through comparative analysis with numerical simulations,demonstrating strong consistency in stress field predictions.The main findings indicate that the EDZ causes a significant non-monotonic variation in the elastic hoop stress distribution.While it does not significantly affect the range of the plastic zone,it reduces the permeability and bearing capacity of the surrounding rock,highlighting the necessity of integrating the centripetal reduction of mechanical properties and strictly controlling excavation-induced damage in the design practice.Furthermore,this study provides a new approach for the selection of lining materials and structural design for CAES chambers:the radial stiffness smoothly increases to match the EDZ surrounding rock stiffness,and the cohesion exceeds that of the surrounding rock,which can significantly optimize the overall system's stress distribution.This study provides valuable insights and references for the selection of excavation methods,stability assessment,and support structure design for CAES engineering,and holds significant importance for improving the CAES technology system.展开更多
Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to ...Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to these excavations is important for efficient and safe underground construction.However,previous investigations of this issue have predominantly made assumptions of plane-strain conditions and normal gravity states,and focused on the performance of tunnels affected by excavation and unloading in sandy strata.In this study,a 3D centrifuge model test is conducted to investigate the influence of excavation on an adjacent existing tunnel in normally consolidated clay.The testing results indicate that the excavation has a significant impact on the horizontal deformation of the retaining wall and tunnel.Moreover,the settlements of the ground surface and the tunnel are mainly affected by the long-term period after excavation.The excavation is found to induce ground movement towards the pit,resulting in prolonged fluctuations in pore water pressure and lateral earth pressure.The testing results are compared with numerical simulations,achieving consistency.A numerical parametric study on the tunnel location shows that when the tunnel is closer to the retaining wall,the decreases in lateral earth pressure and pore water pressure during excavation are more pronounced.展开更多
With the rapid development of high-speed railway tunnel construction mileage and technology,the construction of the tunnel face is a key part of tunnel construction in high-speed railway tunnel projects.As mechanizati...With the rapid development of high-speed railway tunnel construction mileage and technology,the construction of the tunnel face is a key part of tunnel construction in high-speed railway tunnel projects.As mechanization and intelligence levels continue to increase,supporting equipment mainly includes rock drilling trolleys,arch installation trolleys,wet spraying robots,anchor trolleys,etc.To address the issues of high construction costs and the need to replace equipment for different processes,this paper designs an economical and practical multi-functional integrated trolley for high-speed railway double-track tunnels based on engineering cases.This trolley can adapt to various tunnel face excavation methods such as the full-face method and the bench method,enabling integrated functions such as drilling and blasting holes,anchor holes,advance grouting holes,pipe roof construction,charging,anchor installation and grouting,and arch mesh installation.This reduces the number of operators,improves the working environment of high-speed railway tunnels,lowers construction costs,and enhances construction efficiency.展开更多
This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations.Six major geotechnical parameters were studied.Statistical methods,such ...This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations.Six major geotechnical parameters were studied.Statistical methods,such as pair plots and Pearson correlation,highlighted excavation depth(correlation coefficient=0.82)as the most significant factor.For method prediction,five deep learning models(CNN,LSTM,BiLSTM,CNN-LSTM,and CNN-BiLSTM)were built.The CNN-BiLSTM model excelled in training performance(R^(2)=0.98,RMSE=0.02),while BiLSTM reached superior testing results(R^(2)=0.85,RMSE=0.06),suggesting greater generalization ability.Based on the feature importance analysis from model weights,excavation depth,stiffness ratio,and bracing spacing were ranked as the highest contributors.This point verified a lack of prediction bias on residual plots and high model agreement with measured values on Taylor diagrams(correlation coefficient 0.92).The effectiveness of integrated techniques was reliably assured for predicting wall deformation.This approach facilitates more accurate and efficient geotechnical design and provides engineers with improved tools for risk evaluation and decision-making in deep excavation projects.展开更多
Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all u...Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all under the limitations of either imprecise theories or insufficient data.In the present study,we proposed a physics-constrained neural network(PhyNN)for predicting excavation-induced GSS to fully integrate the theory of elasticity with observations and make full use of the strong fitting ability of neural networks(NNs).This model incorporates an analytical solution as an additional regularization term in the loss function to guide the training of NN.Moreover,we introduced three trainable parameters into the analytical solution so that it can be adaptively modified during the training process.The performance of the proposed PhyNN model is verified using data from a case study project.Results show that our PhyNN model achieves higher prediction accuracy,better generalization ability,and robustness than the purely data-driven NN model when confronted with data containing noise and outliers.Remarkably,by incorporating physical constraints,the admissible solution space of PhyNN is significantly narrowed,leading to a substantial reduction in the need for the amount of training data.The proposed PhyNN can be utilized as a general framework for integrating physical constraints into data-driven machine-learning models.展开更多
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen...Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.展开更多
The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation...The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems.展开更多
The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of supp...The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results.展开更多
During the excavation and support process in deep soft rocks,complex conditions such as high stress and strong disturbance can be encountered.The complex conditions can cause failure of the support system.Aiming at st...During the excavation and support process in deep soft rocks,complex conditions such as high stress and strong disturbance can be encountered.The complex conditions can cause failure of the support system.Aiming at stability control in deep soft rocks,we proposed the excavation compensation theory.A new high strength and high toughness material was developed.The breaking load and elongation of the new material are 1.59 and 1.78 times that of common bolt materials.To overcome the problem that the CABLE element in FLAC^(3D) cannot simulate failure of support structures,the numerical model for the whole process of force-breaking-anchorage failure simulation(FBAS)for bolts(cables)was established.The numerical experiments on the excavation compensation control of deep soft rock were carried out.The excavation compensation control mechanism of high strength and high toughness material was clarified.Compared with the common support scheme,the highly prestressed support has a maximum increase of 90.24%in radial stress compensation rate and a maximum increase of 67.85%in deformation control rate.The results illustrate the rationality of the excavation compensation theory.The compensation design method of excavations in deep soft rocks was proposed and applied in a deep soft rock chamber.The monitoring indicated that the maximum surrounding rock deformation is 180 mm,reduced by 64%compared to the common support.The deformation of the chamber was controlled and the surrounding rock was stable.展开更多
Maintaining the stability of the excavation face is key for ensuring the safety of underwater shield tunnel construction.However,the majority of current studies on the stability of excavation face focus on the homogen...Maintaining the stability of the excavation face is key for ensuring the safety of underwater shield tunnel construction.However,the majority of current studies on the stability of excavation face focus on the homogeneous strata,with limited research conducted on the upper loose and lower dense strata.Active instability tests are conducted in this study,in concert with the digital image correlation(DIC)technique,to investigate the effects of different water pressure ratios in upper loose and lower dense water-rich strata.The accuracy of these model tests is verified using numerical simulations.The results indicate that as water pressure ratio decreases,there is an increase in both the peak displacement of surface settlement and the seepage path range of water ahead of the excavation face expands.In contrast,decreasing water pressure ratio will break the limit equilibrium state of the strata faster,cause the earth pressure on the cutterhead to change more rapidly,and increase the instability range of the strata.展开更多
A holistic and precise assessment of retaining wall deformations is critical for on-site risk management of large combined deep excavation projects,where the risk-related points are highly dispersed,evolving,and inter...A holistic and precise assessment of retaining wall deformations is critical for on-site risk management of large combined deep excavation projects,where the risk-related points are highly dispersed,evolving,and interacting.Despite extensive exploration of this topic in previous studies,the omission of intricate spatiotemporal characteristics of wall deformations has resulted in diminished prediction accuracy and stability.To mitigate this deficiency,a spatiotemporal characteristics matrix for all data points and time series was first generated for a deep excavation scenario and used as input for a new hybrid model that combines convolutional neural network(CNN)and long short-term memory(LSTM)with incorporated attention mechanism(CNN-LSTM-Att),which enables the cross-learning mechanism and improves interpretability.In addition,by leveraging the attention weight,a new risk assessment index for retaining wall deformations across various scenarios was formulated.Then the proposed method was applied in a large combined deep excavation in Shanghai,China.The results show that:(1)The incorporation of fedin characteristic data and the attention mechanism enables the proposed method to produce satisfactory prediction results for the holistic spatiotemporal distribution of a large combined excavation;(2)Compared with other published models,the proposed model shows much better prediction accuracy,interpretability,and stability,especially in medium-and long-term predictions;and(3)The new risk assessment index serves as a reliable decision-making tool for assessing the risk evolution of retaining wall deformations and provides valuable guidance for effective risk management in multi-scenario excavation projects.展开更多
In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in lengt...In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in length, and an archaeological column in the middle was excavated by means of a top-down excavation technique. To investigate the stability performance of the modeled test square and the associated effect on the adjacent area, a real-time comprehensive instrumentation program was conducted during the excavation. Field observations included ground settlements, lateral displacement, pore pressure and underground water level. Monitoring data indicates that the ground settlement induced by dewatering and unloading action basically decreases with the increase of the distance away from the pit edge, and the lateral displacements at four sides showa nonlinear variation along the depth. The maximum value is far below the acceptable value regulated by the related standard,which validates the stability of the modeled test square during excavation. Variations of pore pressure and water level suggest that long-term stability should be paid more attention due to the slowconsolidation of soft soil. Meanwhile, it is proved that the step shape of the wall can resist lateral displacement more effectively than the vertical shape of wall. This case study provides insights into the real archaeological excavation in Hangzhou, in particular Liangzhu prehistoric earthen sites.展开更多
文摘The construction of the tunnel face is a critical aspect of tunnel excavation,and its supporting equipment mainly includes drilling jumbos,arch installation trolleys,wet spraying manipulators,and anchor bolt trolleys.To address the issues of high construction costs and the need to replace equipment for different processes,this paper designs an economical and practical multi-functional integrated trolley based on engineering cases.This trolley is suitable for various construction methods such as full-face excavation and benching method,and integrates functions such as drilling and blasting holes,anchor bolt holes,advance grouting holes,pipe roof construction,charging,anchor bolt installation and grouting,and arch mesh installation.It reduces the number of operators,improves the tunnel working environment,lowers construction costs,and enhances construction efficiency.
基金The National Natural Science Foundation of China(No. 50978112)
文摘The impact of excavation on the reliability of anti- pull piles is studied, and three cases of reliability analysis, named reliability of ultimate limit state (ULS), reliability of serviceability limit state (SLS) and reliability of system (SYS) are studied. The reduction factor of the pile capacity is used to calculate the reliability indices for the three cases. The ratio ξ of the pile capacity of SLS to the pile capacity of ULS has a significant influence on the reliability indices of SLS and SYS. The mean value μξ of the ratio ξ: is considered as a random variable to study the reliability indices of SLS and SYS. The numerical example demonstrates that the excavation depth and the excavation diameter are proved to have significant influences on the reduction factor of the pile capacity and the reliability indices. The reliability indices decrease with the increase in the excavation depth, and the excavation diameter has a considerable influence on the reliability index when the excavation is relatively deep. In addition, μξ has a significant influence on the reliability indices of SLS and SYS. For a more accurate estimation of μξ, further research should be conducted to study μξ.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3009400)the National Natural Science Foundation of China(Grant Nos.42307218 and U2239251).
文摘The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2020QE124,ZR2023ME031 and ZR2023ME012)Innovation Achievement Cultivation Project of Qingdao University of Technology(CLZ2022-002)National Natural Science Foundation of China(52404222 and 52374209).
文摘Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extraction velocity(v_(e))and extraction distance(L)in the formation process of air curtain,the numerical simulation method was used to analyze the rules of airflow structure evolution and the diffusion characteristics of dust particles in fully mechanized excavation tunnel.The results indicate that as v_(r) and v_(e) increase,the migration path of the wall jet of the air curtain changes into an axial direction;as L decreases,the migration distance increases accordingly.These phenomena make the airflow distribution in the working face tends to be uniform.The dust diffusion distance reduces as well,wherein,the range of the discrete area of dust particles decreases sharply,until all dust particles are concentrated in the accumulation area.On this basis,the v_(r),v_(e) and L were optimized and applied in the 63_(up) 08 fully mechanized working face.By the application of the optimal parameters,the average dust removal efficiency at the driver’s position increased by 71%.The dust concentration was reduced and the working environment had been improved effectively.
基金supported by the National Natural Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Outstanding Youth Project of Hunan Provincial Department of Education,China(Grant No.23B0008).
文摘In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of China(No.41827808)the Major Program of National Natural Science Foundation of China(No.42090055)+2 种基金the National Natural Science Foundation of China(Nos.42077268)the National Natural Science Foundation of China(No.42107194)the Fundamental Research Funds for the Central Universities(No.CUGL190810)。
文摘The soil arching effect is an important factor affecting the internal load transfer of excavation-induced slopes.Physical model tests are usually used for studying the soil arching effect.Although physical model tests can monitor local point loads to demonstrate changes in local stresses,changes in force chains inside slopes are rarely demonstrated by physical modelling,which restricts the understanding of load transfer.To explore overall changes in stresses in slopes from a more microscopic perspective,a numerical simulation of the slope under excavation was carried out.Using built-in code and fish function programming in PFC^(3D),the slope model was developed.Monitoring areas were set up to monitor the changes in stresses and force chains during excavation.The simulation results show that excavation width affects the size of deformation area,and the deformation area expands as excavation width increases.Excavation causes load transfer and the formation of soil arching in the slope.A mechanism is proposed to explain the effect of excavation on soil arching formation and load transfer.The numerical simulation is important for revealing the load transfer of slopes during excavation,and the research results have practical value for the prevention and mitigation of landslides caused by excavation.
基金Project(52178402) supported by the National Natural Science Foundation of China。
文摘This paper proposes a longitudinal vulnerability-based analysis method to evaluate the impact of foundation pit excavation on shield tunnels,accounting for geological uncertainties.First,the shield tunnel is modeled as an Euler Bernoulli beam resting on the Pasternak foundation incorporating variability in subgrade parameters along the tunnel’s length.A random analysis method using random field theory is introduced to evaluate the tunnel’s longitudinal responses to excavation.Next,a risk assessment index system is established.The normalized relative depth between the excavation and the shield tunnel is used as a risk index,while the maximum longitudinal deformation,the maximum circumferential opening,and the maximum longitudinal bending moment serve as performance indicators.Based on these,a method for analyzing the longitudinal fragility of shield tunnels under excavation-induced disturbances is proposed.Finally,the technique is applied to a case study involving a foundation pit excavation above a shield tunnel,which is the primary application scenario of this method.Vulnerability curves for different performance indicators are derived,and the effects of tunnel stiffness and subgrade stiffness on the tunnel vulnerability are explored.The results reveal significant differences in vulnerability curves depending on the performance index used.Compared to the maximum circumferential opening and the maximum longitudinal bending moment,selecting the maximum longitudinal deformation as the control index better ensures the tunnel’s usability and safety under excavation disturbances.The longitudinal vulnerability of the shield tunnel nonlinearly decreases with the increase of the tunnel stiffness and subgrade stiffness,and the subgrade stiffness has a more pronounced effect.Parametric analyses suggest that actively reinforcing the substratum is more effective on reducing the risk of tunnel failure due to adjacent excavations than passive reinforcement of the tunnel structure.
基金supported by the National Natural Science Foundation of China (Grant Nos.52008039 and 52308425)the Natural Science Foundation of Hunan Province (Grant No.2021JJ40592).
文摘Deep excavations in silt strata can lead to large deformation problems,posing risks to both the excavation and adjacent structures.This study combines field monitoring with numerical simulation to investigate the underlying mechanisms and key aspects associated with large deformation problems induced by deep excavation in silt strata in Shenzhen,China.The monitoring results reveal that,due to the weak property and creep effect of the silt strata,the maximum wall deflection in the first excavated section(Section 1)exceeds its controlled value at more than 93%of measurement points,reaching a peak value of 137.46 mm.Notably,the deformation exhibits prolonged development characteristics,with the diaphragm wall deflections contributing to 39%of the overall deformation magnitude during the construction of the base slab.Subsequently,numerical simulations are carried out to analyze and assess the primary factors influencing excavation-induced deformations,following the observation of large deformations.The simulations indicate that the low strength of the silt soil is a pivotal factor that results in significant deformations.Furthermore,the flexural stiffness of the diaphragm walls exerts a notable influence on the development of deformations.To address these concerns,an optimization study of potential treatment measures was performed during the subsequent excavation of Section 2.The combined treatment approach,which comprises the reinforcement of the silt layer within the excavation and the increase in the thickness of the diaphragm walls,has been demonstrated to offer an economically superior solution for the handling of thick silt strata.This approach has the effect of reducing the lateral wall displacement by 83.1%and the ground settlement by 70.8%,thereby ensuring the safe construction of the deep excavation.
基金Science and Technology Commission of Shanghai Municipality,Grant/Award Number:22dz1205300。
文摘Currently,there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage(CAES)chambers.This study presents a comprehensive analytical framework for evaluating the elastic and elastoplastic stress fields in CAES chambers surrounding rock,incorporating excavation-induced centripetal reduction of rock stiffness and strength.A proposed model introduces exponential reduction functions for the deformation modulus and cohesion within the excavation disturbed zone(EDZ),deriving analytical solutions for both elastic and elastoplastic stress distributions.A case study of a practical engineering project validates the theoretical formulations through comparative analysis with numerical simulations,demonstrating strong consistency in stress field predictions.The main findings indicate that the EDZ causes a significant non-monotonic variation in the elastic hoop stress distribution.While it does not significantly affect the range of the plastic zone,it reduces the permeability and bearing capacity of the surrounding rock,highlighting the necessity of integrating the centripetal reduction of mechanical properties and strictly controlling excavation-induced damage in the design practice.Furthermore,this study provides a new approach for the selection of lining materials and structural design for CAES chambers:the radial stiffness smoothly increases to match the EDZ surrounding rock stiffness,and the cohesion exceeds that of the surrounding rock,which can significantly optimize the overall system's stress distribution.This study provides valuable insights and references for the selection of excavation methods,stability assessment,and support structure design for CAES engineering,and holds significant importance for improving the CAES technology system.
基金supported by the National Natural Science Foundation of China(Nos.52378341,51938005,and 52090082).
文摘Urban spaces are becoming increasingly congested,and excavations are frequently performed close to existing underground structures such as tunnels.Understanding the mechanical response of proximal soil and tunnels to these excavations is important for efficient and safe underground construction.However,previous investigations of this issue have predominantly made assumptions of plane-strain conditions and normal gravity states,and focused on the performance of tunnels affected by excavation and unloading in sandy strata.In this study,a 3D centrifuge model test is conducted to investigate the influence of excavation on an adjacent existing tunnel in normally consolidated clay.The testing results indicate that the excavation has a significant impact on the horizontal deformation of the retaining wall and tunnel.Moreover,the settlements of the ground surface and the tunnel are mainly affected by the long-term period after excavation.The excavation is found to induce ground movement towards the pit,resulting in prolonged fluctuations in pore water pressure and lateral earth pressure.The testing results are compared with numerical simulations,achieving consistency.A numerical parametric study on the tunnel location shows that when the tunnel is closer to the retaining wall,the decreases in lateral earth pressure and pore water pressure during excavation are more pronounced.
文摘With the rapid development of high-speed railway tunnel construction mileage and technology,the construction of the tunnel face is a key part of tunnel construction in high-speed railway tunnel projects.As mechanization and intelligence levels continue to increase,supporting equipment mainly includes rock drilling trolleys,arch installation trolleys,wet spraying robots,anchor trolleys,etc.To address the issues of high construction costs and the need to replace equipment for different processes,this paper designs an economical and practical multi-functional integrated trolley for high-speed railway double-track tunnels based on engineering cases.This trolley can adapt to various tunnel face excavation methods such as the full-face method and the bench method,enabling integrated functions such as drilling and blasting holes,anchor holes,advance grouting holes,pipe roof construction,charging,anchor installation and grouting,and arch mesh installation.This reduces the number of operators,improves the working environment of high-speed railway tunnels,lowers construction costs,and enhances construction efficiency.
文摘This paper presents a deep learning architecture combined with exploratory data analysis to estimate maximum wall deflection in deep excavations.Six major geotechnical parameters were studied.Statistical methods,such as pair plots and Pearson correlation,highlighted excavation depth(correlation coefficient=0.82)as the most significant factor.For method prediction,five deep learning models(CNN,LSTM,BiLSTM,CNN-LSTM,and CNN-BiLSTM)were built.The CNN-BiLSTM model excelled in training performance(R^(2)=0.98,RMSE=0.02),while BiLSTM reached superior testing results(R^(2)=0.85,RMSE=0.06),suggesting greater generalization ability.Based on the feature importance analysis from model weights,excavation depth,stiffness ratio,and bracing spacing were ranked as the highest contributors.This point verified a lack of prediction bias on residual plots and high model agreement with measured values on Taylor diagrams(correlation coefficient 0.92).The effectiveness of integrated techniques was reliably assured for predicting wall deformation.This approach facilitates more accurate and efficient geotechnical design and provides engineers with improved tools for risk evaluation and decision-making in deep excavation projects.
基金funded by the National Natural Science Foundation of China(Grant No.52090082)support provided by the China Scholarship Council(Grant No.202206260206).
文摘Accurate prediction of ground surface settlement(GSS)adjacent to an excavation is important to prevent potential damage to the surrounding environment.Previous studies have extensively delved into this topic but all under the limitations of either imprecise theories or insufficient data.In the present study,we proposed a physics-constrained neural network(PhyNN)for predicting excavation-induced GSS to fully integrate the theory of elasticity with observations and make full use of the strong fitting ability of neural networks(NNs).This model incorporates an analytical solution as an additional regularization term in the loss function to guide the training of NN.Moreover,we introduced three trainable parameters into the analytical solution so that it can be adaptively modified during the training process.The performance of the proposed PhyNN model is verified using data from a case study project.Results show that our PhyNN model achieves higher prediction accuracy,better generalization ability,and robustness than the purely data-driven NN model when confronted with data containing noise and outliers.Remarkably,by incorporating physical constraints,the admissible solution space of PhyNN is significantly narrowed,leading to a substantial reduction in the need for the amount of training data.The proposed PhyNN can be utilized as a general framework for integrating physical constraints into data-driven machine-learning models.
基金supported by grants from the National Natural Science Foundation of China(Nos.12172159 and 12362019).
文摘Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.
文摘The M-shaped multi-row pile foundation retaining structure represents an enhanced version of conventional multi-row anti-sliding support systems.To date,the implementation of M-shaped pile configurations in foundation pit excavations has not been extensively investigated,with particularly scant research focusing on their load-bearing mechanisms and stress redistribution characteristics.Furthermore,numerical modeling methodologies for such geometrically optimized pile networks remain underdeveloped compared to practical engineering applications,creating a notable research-practice gap in geotechnical engineering.A comparative finite element analysis was systematically conducted using ABAQUS software to establish three distinct excavation support configurations:single-row cantilever retaining structures,three-row cantilever configurations,and M-shaped multi-row pile foundation systems.Subsequent numerical simulations enabled quantitative comparisons of critical performance indicators,including pile stress distribution patterns,lateral displacement profiles,and bending moment diagrams across different structural typologies.The parametric investigation revealed characteristic mechanical responses associated with each configuration,establishing corresponding mechanical principles governing the interaction between pile topology and soil-structure behavior towers.The findings of this study provide critical references for the design optimization of M-shaped multi-row pile foundation retaining systems.
基金supported by the International Institute of Earthquake Engineering and Seismology(IIEES) as technical project No.760
文摘The primary goal of this study is to provide an efficient numerical tool to analyze the seismic performance of nailed walls.Modeling such excavation supports involves complexities due partly to the interaction of support with soil and partly because of the amplification of seismic waves through an excavation wall.Consequently,innovative modeling is suggested herein,incorporating the calibration of the soil constitutive model in a targeted range of stress and strain,and the detection of a natural period of complex systems,including soil and structure,while benefiting from Rayleigh damping to filter unwanted noises.The numerical model was achieved by simulating a previous centrifuge test of the excavation wall,manifested at the pre-failure state.Notably,the calibration of the soil constitutive model through empirical relations,which replaces the numerical reproduction of an element test,more accurately simulated the soil-nail-wall interaction.Two factors were crucial to a successful result.First,probing the natural period of the complicated geometry of the model by applying white noises.Second,considering Rayleigh damping to withdraw unwanted noises and thus assess their permanent effects on the model.Rayleigh damping was applied instead of filtering the obtained results.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3805700)the National Natural Science Foundation of China(Grant No.42277174)the Fundamental Research Funds for the Central Universities,China(Grant No.2024JCCXSB01).
文摘During the excavation and support process in deep soft rocks,complex conditions such as high stress and strong disturbance can be encountered.The complex conditions can cause failure of the support system.Aiming at stability control in deep soft rocks,we proposed the excavation compensation theory.A new high strength and high toughness material was developed.The breaking load and elongation of the new material are 1.59 and 1.78 times that of common bolt materials.To overcome the problem that the CABLE element in FLAC^(3D) cannot simulate failure of support structures,the numerical model for the whole process of force-breaking-anchorage failure simulation(FBAS)for bolts(cables)was established.The numerical experiments on the excavation compensation control of deep soft rock were carried out.The excavation compensation control mechanism of high strength and high toughness material was clarified.Compared with the common support scheme,the highly prestressed support has a maximum increase of 90.24%in radial stress compensation rate and a maximum increase of 67.85%in deformation control rate.The results illustrate the rationality of the excavation compensation theory.The compensation design method of excavations in deep soft rocks was proposed and applied in a deep soft rock chamber.The monitoring indicated that the maximum surrounding rock deformation is 180 mm,reduced by 64%compared to the common support.The deformation of the chamber was controlled and the surrounding rock was stable.
基金supported by the National Natural Science Foundation of China(No.51978019)the Natural Science Foundation of Beijing Municipality(No.8222004),China.
文摘Maintaining the stability of the excavation face is key for ensuring the safety of underwater shield tunnel construction.However,the majority of current studies on the stability of excavation face focus on the homogeneous strata,with limited research conducted on the upper loose and lower dense strata.Active instability tests are conducted in this study,in concert with the digital image correlation(DIC)technique,to investigate the effects of different water pressure ratios in upper loose and lower dense water-rich strata.The accuracy of these model tests is verified using numerical simulations.The results indicate that as water pressure ratio decreases,there is an increase in both the peak displacement of surface settlement and the seepage path range of water ahead of the excavation face expands.In contrast,decreasing water pressure ratio will break the limit equilibrium state of the strata faster,cause the earth pressure on the cutterhead to change more rapidly,and increase the instability range of the strata.
基金supported by the National Natural Science Foundation of China(Grant No.52090082).
文摘A holistic and precise assessment of retaining wall deformations is critical for on-site risk management of large combined deep excavation projects,where the risk-related points are highly dispersed,evolving,and interacting.Despite extensive exploration of this topic in previous studies,the omission of intricate spatiotemporal characteristics of wall deformations has resulted in diminished prediction accuracy and stability.To mitigate this deficiency,a spatiotemporal characteristics matrix for all data points and time series was first generated for a deep excavation scenario and used as input for a new hybrid model that combines convolutional neural network(CNN)and long short-term memory(LSTM)with incorporated attention mechanism(CNN-LSTM-Att),which enables the cross-learning mechanism and improves interpretability.In addition,by leveraging the attention weight,a new risk assessment index for retaining wall deformations across various scenarios was formulated.Then the proposed method was applied in a large combined deep excavation in Shanghai,China.The results show that:(1)The incorporation of fedin characteristic data and the attention mechanism enables the proposed method to produce satisfactory prediction results for the holistic spatiotemporal distribution of a large combined excavation;(2)Compared with other published models,the proposed model shows much better prediction accuracy,interpretability,and stability,especially in medium-and long-term predictions;and(3)The new risk assessment index serves as a reliable decision-making tool for assessing the risk evolution of retaining wall deformations and provides valuable guidance for effective risk management in multi-scenario excavation projects.
基金The National Natural Science Foundation of China(No.51578272)the National Key Technology R&D Program of China during the Twelfth Five-Year Plan Period(No.2013BAK08B11)
文摘In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2. 3 min depth, inplane dimensions of 5 min width by 5 m in length, and an archaeological column in the middle was excavated by means of a top-down excavation technique. To investigate the stability performance of the modeled test square and the associated effect on the adjacent area, a real-time comprehensive instrumentation program was conducted during the excavation. Field observations included ground settlements, lateral displacement, pore pressure and underground water level. Monitoring data indicates that the ground settlement induced by dewatering and unloading action basically decreases with the increase of the distance away from the pit edge, and the lateral displacements at four sides showa nonlinear variation along the depth. The maximum value is far below the acceptable value regulated by the related standard,which validates the stability of the modeled test square during excavation. Variations of pore pressure and water level suggest that long-term stability should be paid more attention due to the slowconsolidation of soft soil. Meanwhile, it is proved that the step shape of the wall can resist lateral displacement more effectively than the vertical shape of wall. This case study provides insights into the real archaeological excavation in Hangzhou, in particular Liangzhu prehistoric earthen sites.