期刊文献+
共找到411篇文章
< 1 2 21 >
每页显示 20 50 100
Water–Heat Synergy Shapes Evapotranspiration–Precipitation Coupling Patterns across Northern China 被引量:1
1
作者 Zesu YANG Qiang ZHANG +4 位作者 Yu ZHANG Ping YUE Jian ZENG Lixia MENG Yulei QI 《Advances in Atmospheric Sciences》 2025年第6期1167-1178,共12页
Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere couplin... Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere coupling and the individual roles of each factor, but the synergistic effect of the two factors remains unclear. This study considers the covariation of evapotranspiration and precipitation to assess evapotranspiration–precipitation(ET–P) coupling across northern China,exploring its spatial variations and their linkage to water and heat factors. Our findings reveal a transition from strongly positive coupling in the northwest to weakly negative coupling in the southeast, peaking in spring. These spatial variations are attributable to water(soil moisture) and heat(air temperature), which explain 39% and 25% of the variability,respectively. The aridity index(AI), a water–heat synergy factor, is the dominant factor, explaining 66% of the spatial variation in ET–P coupling. As the AI increases, ET–P coupling shifts from strongly positive to weakly negative, with an AI around 0.7. This shift is determined by a shift in the evapotranspiration–lifting condensation level(LCL) coupling under an AI change. Regions with an AI below 0.7 experience water-limited evapotranspiration, where increased soil moisture enhances evapotranspiration, reduces sensible heat(H), and lowers the LCL, resulting in a negative ET–LCL coupling.Conversely, regions with an AI above 0.7 experience energy-limited evapotranspiration, where the positive ET–LCL coupling reflects a positive H–LCL coupling or a positive impact of the LCL on evapotranspiration. This analysis advances our understanding of the intricate influences of multifactor surface interactions on the spatial variations of land–atmosphere coupling. 展开更多
关键词 land–atmosphere interaction evapotranspiration PRECIPITATION aridity index climate transition zone
在线阅读 下载PDF
TMRE:Novel Algorithm for Computing Daily Reference Evapotranspiration Using Transformer-Based Models
2
作者 Bushra Tayyaba Muhammad Usman Ghani Khan +2 位作者 Talha Waheed Shaha Al-Otaibi Tanzila Saba 《Computers, Materials & Continua》 2025年第5期2851-2864,共14页
Reference Evapotranspiration(ETo)iswidely used to assess totalwater loss between land and atmosphere due to its importance in maintaining the atmospheric water balance,especially in agricultural and environmental mana... Reference Evapotranspiration(ETo)iswidely used to assess totalwater loss between land and atmosphere due to its importance in maintaining the atmospheric water balance,especially in agricultural and environmental management.Accurate estimation of ETo is challenging due to its dependency onmultiple climatic variables,including temperature,humidity,and solar radiation,making it a complexmultivariate time-series problem.Traditional machine learning and deep learning models have been applied to forecast ETo,achieving moderate success.However,the introduction of transformer-based architectures in time-series forecasting has opened new possibilities formore precise ETo predictions.In this study,a novel algorithm for ETo forecasting is proposed,focusing on four transformer-based models:Vanilla Transformer,Informer,Autoformer,and FEDformer(Frequency Enhanced Decomposed Transformer),applied to an ETo dataset from the Andalusian region.The novelty of the proposed algorithm lies in determining optimized window sizes based on seasonal trends and variations,which were then used with each model to enhance prediction accuracy.This custom window-sizing method allows the models to capture ETo’s unique seasonal patterns more effectively.Finally,results demonstrate that the Informer model outperformed other transformer-based models,achievingmean square error(MSE)values of 0.1404 and 0.1445 for forecast windows(15,7)and(30,15),respectively.The Vanilla Transformer also showed strong performance,closely following the Informermodel.These findings suggest that the proposed optimized window-sizing approach,combined with transformer-based architectures,is highly effective for ETo modelling.This novel strategy has the potential to be adapted in othermultivariate time-series forecasting tasks that require seasonality-sensitive approaches. 展开更多
关键词 Reference evapotranspiration ETo TRANSFORMER INFORMER autoformer FEDformer timeseries forecasting self-attention
在线阅读 下载PDF
Evapotranspiration partitioning and crop water productivity under varying planting densities of maize in north China
3
作者 Zhendong Liu Mingliang Gao +5 位作者 Fuying Liu Shiyu Wei Haoze Zhang Huabin Yuan Quanqi Li Rui Zong 《The Crop Journal》 2025年第3期952-960,共9页
Selecting an appropriate planting density is an effective way to improve crop water productivity(WPC).However, there is a lack of research on the balance between evapotranspiration(ET) partitioning, water consumption,... Selecting an appropriate planting density is an effective way to improve crop water productivity(WPC).However, there is a lack of research on the balance between evapotranspiration(ET) partitioning, water consumption, and grain production under different summer maize planting densities. To close this knowledge gap, a two-year field experiment was conducted in the North China Plain(NCP) to reveal the effects of different planting densities(HD: 100,000 plants ha^(-1);MD: 78,000 plants ha^(-1);LD:56,000 plants ha^(-1)) on ET partitioning, grain yield, and water productivity of summer maize. The water-heat-carbon-nitrogen simulator(WHCNS) model was employed to calculate ET partitioning and perform scenario simulation after calibration and validation. The results showed that compared to the LD treatment, ET of the summer maize and grain yield in the MD and HD treatments significantly increased. Model simulations showed that the ratio of evaporation to ET ranged from 25.6% to 30.7%and reduced as increasing planting densities. Increasing planting density enhanced total transpiration of summer maize more than 20 mm, comparing to LD treatment, and the most significant differences between various planting densities appeared at the mid-growth stage(August 1 to 31). Scenario simulations indicated that grain yield and WPCof summer maize were consistently higher in wet and normal years compared to drought years, exhibiting a trend of initially increasing and then decreasing with increasing planting density. The highest grain yield and WPCof summer maize were observed at a planting density of approximately 80,000 plants ha^(-1). The results provide theoretical support for selecting a summer maize planting density and effectively utilizing agricultural water in the NCP. 展开更多
关键词 Soil water storage WHCNS evapotranspiration Water productivity Summer maize
在线阅读 下载PDF
Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management
4
作者 Moein Tosan Mohammad Reza Gharib +1 位作者 Nasrin Fathollahzadeh Attar Ali Maroosi 《Computer Modeling in Engineering & Sciences》 2025年第2期1109-1154,共46页
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3... Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management. 展开更多
关键词 Artificial neural networks bibliometric analysis evapotranspiration hybrid models research trends systematic literature review water resources management
在线阅读 下载PDF
Sensitivity of gross primary production and evapotranspiration to heat and drought stress in a young temperate plantation in northern China
5
作者 Hongxian Zhao Zeyuan Zhou +9 位作者 Feng Zhang Charles P.-A.Bourque Xin Jia Xinhao Li Peng Liu Haiqun Yu Yun Tian Chuan Jin Shaorong Hao Tianshan Zha 《Forest Ecosystems》 2025年第2期177-189,共13页
Assessing the sensitivities of ecosystem functions to climatic factors is essential to understanding the response of ecosystems to environmental change.Temperate plantation forests contribute to global greening and cl... Assessing the sensitivities of ecosystem functions to climatic factors is essential to understanding the response of ecosystems to environmental change.Temperate plantation forests contribute to global greening and climate change mitigation,yet little is known as to the sensitivity of gross primary production(GPP)and evapotranspiration(ET)of these forests to heat and drought stress.Based on near-continuous,eddy-covariance and hydrometeorological data from a young temperate plantation forest in Beijing,China(2012-2019),we used a slidingwindow-fitting technique to assess the seasonal and interannual variation in ecosystem sensitivity(i.e.,calculated slopes,S_(GPP-Ta),S_(ET-Ta),S_(GPP-EF),and S_(ET-EF))in GPP and ET to anomalies in air temperature(T_(a))and evaporative fraction(EF).The EF was used here as an indicator of drought.Seasonally,daily SGPP-Ta,SET-Ta,and SGPP-EF were greatest in summer,reaching maxima of 1.120.56 g C··m^(-2)·d^(-1)·℃^(-1),1.360.56 g H_(2)O·m^(-2)·d^(-1)·℃^(-1),and 0.370.35 g C·m^(-2)·d^(-1),respectively.Evapotranspiration was constrained by drought,especially during the spring-to-summer period,SET-EF reaching0.510.34 g H_(2)O·m^(-2)·d^(-1).Variables EF,T_(a),soil water content(SWC),vapor pressure deficit(VPD),and precipitation(PPT)were the main controls of sensitivity,with SGPP-Ta and SET-Ta increasing with Ta,VPD,and PPT(<50 mm·d^(-1))during both spring and autumn.Increased drought stress during summer caused the positive response in GPP and ET to decrease with atmospheric warming.Variable SET-EF intensified(i.e.,became more negative)with decreasing EF and increasing Ta.Interannually,annual S_(GPP-Ta)and S_(ET-Ta)were positive,S_(GPP-EF)near-neutral,and S_(ET-EF)negative.Interannual variability in S_(GPP-Ta),S_(ET-Ta),S_(ET-EF),and S_(GPP-EF)was largely due to variations in bulk surface conductance.Our study suggests that the dynamics associated with the sensitivity of ecosystems to changes in climatic factors need to be considered in the management of plantation forests under future global climate change. 展开更多
关键词 Climate change evapotranspiration Forest plantation Gross primary production Heat and drought stress Ecosystem sensitivity
在线阅读 下载PDF
High-resolution Standardized Precipitation Evapotranspiration Index(SPEI)reveals trends in drought and vegetation water availability in China
6
作者 Qian He Ming Wang +1 位作者 Kai Liu Bowen Wang 《Geography and Sustainability》 2025年第2期117-130,共14页
Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a hig... Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate. 展开更多
关键词 Standardized Precipitation evapotranspiration Index(SPEI) Long-term drought Vegetation-water relationship High-resolution dataset
在线阅读 下载PDF
Estimating Crop and Reference Evapotranspiration and Crop Factor and Some Growth Indicators for Wheat and Barley in Dhi Qar Governorate Using the CropWat Program
7
作者 Yahya Ajib Oudah Al-Shami Muntadher Hammadi Al-Budeiri 《Journal of Environmental & Earth Sciences》 2025年第1期225-235,共11页
Information about the average water consumption or evapotranspiration of crops is the basis for scheduling irrigation and the water requirements of plants,and choosing the appropriate crops for the region in light.Thi... Information about the average water consumption or evapotranspiration of crops is the basis for scheduling irrigation and the water requirements of plants,and choosing the appropriate crops for the region in light.This experiment was carried out to evaluate and calculate the ability of the CropWat program to estimate evapotranspiration rates,and plant consumptive water use for strategic crops in Iraq,including wheat and barley in Dhi Qar Governorate.The results of the study showed that the maximum root depth ranged between 1.20 m,and 1.10 m in the distance between the vegetative growth and flowering stages for wheat and barley crops,respectively.It was also noted that the crop evapotranspiration(ETc)values decreased at the beginning of the growing season,ranging from 0.79 mm day–1 to 1.57 mm day–1 for wheat and barley crops,respectively.Then,the values increased with the progress of the growing season and the increase of the vegetative mass of the plants,reaching 3.72 mm day–1 and 3.46 mm day–1 for wheat and barley crops,respectively.The reference evapotranspiration(ETo)values were also low in the first months of the year and were around 2.1 mm day–1 at the beginning,then gradually increased with the progress of the months of the year,reaching the maximum reference evapotranspiration values of 10.5 mm day–1 in the seventh month,and then the values decreased at the end of the season for wheat and barley crops. 展开更多
关键词 evapotranspiration Irrigation Scheduling Water Consumption Crop Factor
在线阅读 下载PDF
Attribution analysis of trends in reference crop evapotranspiration in China
8
作者 LIU Yue GUO Mengjing +3 位作者 LI Jing LYU Na ZHANG Junqi ZHANG Bowen 《Journal of Geographical Sciences》 2025年第1期3-16,共14页
Reference crop evapotranspiration(ET_(0)) is essential for determining crop water requirements and developing irrigation strategies.In this study,ET_(0) was calculated via the FAO-56 Penman-Monteith model,and the spat... Reference crop evapotranspiration(ET_(0)) is essential for determining crop water requirements and developing irrigation strategies.In this study,ET_(0) was calculated via the FAO-56 Penman-Monteith model,and the spatiotemporal variations in ET_(0) over China from 1960 to 2019 were analyzed.We then quantified the contributions of five driving factors(air temperature,wind speed,relative humidity,sunshine hours,and CO_(2) concentration)to the ET_(0) trends via a detrending experiment.The results revealed that nationwide ET_(0) showed no significant(p>0.05)decreasing trend from 1960 to 2019,with a trend of−8.56×10^(−2)mm a^(−2).The average temperature and wind speed were identified as the dominant factors affecting ET_(0)trends at the national scale.The contributions of the driving factors to the ET_(0) trends were ranked in the following order:average temperature(21.3%)>wind speed(−15.63%)>sunshine hours(−11.99%)>CO_(2) concentration(6.36%)>relative humidity(3.58%).Spatially,the dominant factors influencing the ET_(0) trends varied widely.In the southeastern region,average temperature and sunshine hours dominated the trends of ET_(0),whereas wind speed and average temperature were the dominant factors in the northwestern region.The findings provide valuable insights into the dominant factors affecting ET_(0)trends in China and highlight the importance of considering different driving factors in calculating crop water requirements. 展开更多
关键词 reference crop evapotranspiration climate change contribution rate trend analysis
原文传递
Estimation of evapotranspiration from artificial forest in mountainous areas of western Loess Plateau based on HYDRUS-1D model 被引量:1
9
作者 LU Rui ZHANG Mingjun +4 位作者 ZHANG Yu QIANG Yuquan CHE Cunwei SUN Meiling WANG Shengjie 《Journal of Arid Land》 SCIE CSCD 2024年第12期1664-1685,共22页
Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and w... Evapotranspiration is the most important expenditure item in the water balance of terrestrial ecosystems,and accurate evapotranspiration modeling is of great significance for hydrological,ecological,agricultural,and water resource management.Artificial forests are an important means of vegetation restoration in the western Loess Plateau,and accurate estimates of their evapotranspiration are essential to the management and development of water use strategies for artificial forests.This study estimated the soil moisture and evapotranspiration based on the HYDRUS-1D model for the artificial Platycladus orientalis(L.)Franco forest in western mountains of Loess Plateau,China from 20 April to 31 October,2023.Moreover,the influence factors were identified by combining the correlation coefficient method and the principal component analysis(PCA)method.The results showed that HYDRUS-1D model had strong applicability in portraying hydrological processes in this area and revealed soil water surplus from 20 April to 31 October,2023.The soil water accumulation was 49.64 mm;the potential evapotranspiration(ET_(p))was 809.67 mm,which was divided into potential evaporation(E_(p);95.07 mm)and potential transpiration(T_(p);714.60 mm);and the actual evapotranspiration(ET_(a))was 580.27 mm,which was divided into actual evaporation(E_(a);68.27 mm)and actual transpiration(T_(a);512.00 mm).From April to October 2023,the ET_(p),E_(p),T_(p),ET_(a),E_(a),and T_(a) first increased and then decreased on both monthly and daily scales,exhibiting a single-peak type trend.The average ratio of T_(a)/ET_(a) was 0.88,signifying that evapotranspiration mainly stemmed from transpiration in this area.The ratio of ET_(a)/ET_(p) was 0.72,indicating that this artificial forest suffered from obvious drought stress.The ET_(p) was significantly positively correlated with ET_(a),and the R^(2) values on the monthly and daily scales were 0.9696 and 0.9635(P<0.05),respectively.Furthermore,ET_(a) was significantly positively correlated with temperature,solar radiation,and wind speed,and negatively correlated with relative humidity and precipitation(P<0.05);and temperature exhibited the highest correlation with ET_(a).Thus,ET_(p) and temperature were the decisive contributors to ET_(a) in this area.The findings provide an effective method for simulating regional evapotranspiration and theoretical reference for water management of artificial forests,and deepen understanding of effects of each influence factors on ET_(a) in arid areas. 展开更多
关键词 potential evapotranspiration actual evapotranspiration EVAPORATION TRANSPIRATION HYDRUS-1D model Loess Plateau soil water content
在线阅读 下载PDF
Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai-Tibet Plateau:observations and analysis from an eddy covariance system
10
作者 Niu Zhu Jinniu Wang +6 位作者 Dongliang Luo Xufeng Wang Cheng Shen Ning Wu Ning Zhang Binghui Tian Aihong Gai 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期175-188,共14页
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing... Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale. 展开更多
关键词 evapotranspiration Energy balance Subalpine forest Three Parallel Rivers region Southeast Qinghai-Tibet Plateau
在线阅读 下载PDF
A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau
11
作者 Ming CHENG Lei ZHONG +6 位作者 Yaoming MA Han MA Yaoxin CHANG Peizhen LI Meilin CHENG Xian WANG Nan GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期435-448,共14页
Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in th... Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in the evaluation and integration of ET products in remote and complex areas such as the Tibetan Plateau(TP).In this paper,the applicability of the multiple collocation(MC)method over the TP is evaluated for the first time,and the uncertainty of multisource ET products(based on reanalysis,remote sensing,and land surface models)is further analyzed,which provides a theoretical basis for ET data fusion.The results show that(1)ET uncertainties quantified via the MC method are lower in RS-based ET products(5.95 vs.7.06 mm month^(-1))than in LSM ET products(10.22 vs.17.97 mm month^(-1))and reanalysis ET estimates(7.27 vs.12.26 mm month-1).(2)A multisource evapotranspiration(MET)dataset is generated at a monthly temporal scale with a spatial resolution of 0.25°across the TP during 2005-15.MET has better performance than any individual product.(3)Based on the fusion product,the total ET amount over the TP and its patterns of spatiotemporal variability are clearly identified.The annual total ET over the entire TP is approximately 380.60 mm.Additionally,an increasing trend of 1.59±0.85 mm yr^(-1)over the TP is shown during 2005-15.This study provides a basis for future studies on water and energy cycles and water resource management over the TP and surrounding regions. 展开更多
关键词 evapotranspiration data fusion multiple collocation the Tibetan Plateau
在线阅读 下载PDF
Spatial-temporal heterogeneity and controlling factors of evapotranspiration in Nujiang River Basin based on Variable Infiltration Capacity(VIC)model
12
作者 ZHANG Xianhe LIU Shiyin +1 位作者 ZHU Yu XIE Fuming 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3598-3614,共17页
Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la... Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw). 展开更多
关键词 evapotranspiration Variable infiltration capacity(VIC)model Spatial temporal heterogeneity Climate change Controlling factors Nujiang River Basin
原文传递
Correlation Analysis between the Evapotranspiration Quantity and Climatic Factors of Artificial Grassland in Three River Sources Areas 被引量:11
13
作者 冯承彬 张耀生 +2 位作者 赵双喜 赵新全 米兆荣 《Agricultural Science & Technology》 CAS 2008年第5期13-18,共6页
Based on observation data from the mini-type automatic weather station,the evapotranspiration quantity of reference crops from artificial grassland in three river sources areas was estimated by the method of FAO Penma... Based on observation data from the mini-type automatic weather station,the evapotranspiration quantity of reference crops from artificial grassland in three river sources areas was estimated by the method of FAO Penman-Monteith.The actual evapotranspiration quantity of grassland was calculated according to the synthetic crop coefficients referenced by FAQ-56,and the change of the actual evapotranspiration quantity of artificial grassland in three river sources areas as well as the relationship between the evapotranspiration quantity and climatic factors were studied.The results suggested that the seasonal change of actual evapotranspiration quantity in grassland was expressed in a single peak curve with the peak in the middle August,and daily transpiration quantity in summer was significantly larger than that in winter.The evapotranspiration was significantly correlated with air temperature,solar radiation and relative humidity,but not significantly correlated with wind speed.Effects of climatic factors on the evapotranspiration quantity of artificial grassland were ordered as follow:air temperature(T)>solar radiation(Ra)>relative humidity(RH)>wind speed(u2). 展开更多
关键词 THREE RIVER SOURCES Artificial GRASSLAND evapotranspiration CLIMATIC factor
在线阅读 下载PDF
Forest Evapotranspiration in Pearl River Delta based on Remote Sensing Technology 被引量:1
14
作者 杨静学 黄本胜 +3 位作者 欧阳显良 陈亮雄 林时君 樊风雷 《Agricultural Science & Technology》 CAS 2014年第3期457-462,共6页
Evapotranspiration ratio of six major forest types in the Pearl River Delta was studied in this paper, and the six forest types included eucalyptus forest, fruit forest, coniferous forest, shrub forest, coniferous for... Evapotranspiration ratio of six major forest types in the Pearl River Delta was studied in this paper, and the six forest types included eucalyptus forest, fruit forest, coniferous forest, shrub forest, coniferous forest, and broad-leaved mixed for- est. The mechanism of PT-T model was analyzed based on Priestley-Taylor ex- tended model, and the result showed that land surface temperature or temperature difference between day and night could be used to evaluate the evapotranspiration factor. The evapotranspiration of 6 forest types was estimated with MODIS data and TM data and weather information during 2008-2009. The result suggested that water consumption of different forest differs insignificantly, and the EF of eucalyptus is not high. 展开更多
关键词 EUCALYPTUS remote sensing evapotranspiration Pearl River Delta HYDROLOGY
在线阅读 下载PDF
Temporal and Spatial Distribution Characteristics of Potential Evapotranspiration and Its Sensitivity to Meteorological Factors in Guizhou Province 被引量:2
15
作者 于飞 谷晓平 熊华 《Agricultural Science & Technology》 CAS 2015年第12期2845-2848,共4页
[Objective] The study aims to discuss the changes of potential evapotran- spiration and its sensitivity to meteorological factors in Guizhou Province, so as to provide important references for assessment of water reso... [Objective] The study aims to discuss the changes of potential evapotran- spiration and its sensitivity to meteorological factors in Guizhou Province, so as to provide important references for assessment of water resources, research of agri- cultural water conservancy and climate change. [Method] Temporal and spatial dis- tribution characteristics of potential evapotranspiration in Guizhou Province from 1961 to 2010 were analyzed, and the sensitivity of potential evapotranspiration to meteo- rological factors in Guizhou Province was studied through correlation analysis. [Re- sult] On the whole, potential evapotranspiration in Guizhou Province was higher in the southwest and the west compared with the northeast and the east. In various seasons, it was the highest in summer, followed by spring and autumn, while it was the lowest in winter. In recent 40 years, annual potential evapotranspiration showed an obvious decreasing trend in most stations of Guizhou Province. The main meteo- rological factors influencing changes of potential evapotranspiration in Guizhou Province were sunshine duration, daily maximum temperature, and daily average relative humidity. [Conclusion] Daily average temperature was not the main meteoro- logical factor affecting changes of potential evapotranspiration in Guizhou Province, while sunshine duration, daily maximum temperature, and daily average relative hu- midity had important effects on potential evapotranspiration in Guizhou Province. 展开更多
关键词 Potential evapotranspiration Temporal-and spatial distribution Sensitivefactor GUIZHOU
在线阅读 下载PDF
Estimation of Cucumber Evapotranspiration in Solar Greenhouse in Northeast China 被引量:17
16
作者 ZHANG Zi-kun, LIU Shi-qi, LIU Su-hui and HUANG Zhi-jun State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, P.R.China 《Agricultural Sciences in China》 CSCD 2010年第4期512-518,共7页
The solar greenhouse without heating system has been widely used for vegetable production in Northeast China since the 1980s. The experiment was conducted in the solar greenhouse to study the relationship between evap... The solar greenhouse without heating system has been widely used for vegetable production in Northeast China since the 1980s. The experiment was conducted in the solar greenhouse to study the relationship between evapotranspiration (ET) of cucumber and climatic factors. Reference evapotranspiration (ET0) and pan evaporation (Ep) were applied to determine cucumber evapotranspiration by regression methods. Results showed that the ET of cucumber increased with the increasing of solar radiation, air temperature and vapor pressure. The solar radiation was the most important factor that influences ET among environmental parameters. The determination coefficient (R2) was 0.865 between ET and Ep, higher than that between ET and ET0 (application of a constant vegetation coefficient, R2 = 0.46). The pan coefficient (kp, determined from the ratio of ET to Ep) and the crop coefficients (kc, determined from the ratio of ET to ET0) showed considerable variability and no obvious systematic pattern could be described throughout the study period. Ep was linearly related to ET and 20 cm pan can be well used to determine the water requirement of cucumber under subsurface drip irrigation in this type of solar greenhouse. 展开更多
关键词 evapotranspiration reference evapotranspiration PENMAN-MONTEITH CUCUMBER solar greenhouse
在线阅读 下载PDF
Environmental and canopy conditions regulate the forest floor evapotranspiration of larch plantations 被引量:3
17
作者 Zebin Liu Yanhui Wang +2 位作者 Pengtao Yu Lihong Xu Songping Yu 《Forest Ecosystems》 SCIE CSCD 2022年第5期606-616,共11页
Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotransp... Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotranspiration(FE),which is an important component of forest evapotranspiration,accounts for a large proportion of the water consumed in arid forests.Elucidating how environmental and canopy conditions impact FE has important significance for guiding integrated forest-water management in a changing environment.Methods:The microlysimeter(ML)-measured evapotranspiration(FE_(ML)),reference evapotranspiration(ET_(o)),volumetric soil moisture(VSM),and canopy leaf area index(LAI)were monitored in a Larix principis-rupprechtii plantation located in the semi-humid Liupan Mountains of Northwest China in 2019(June–September)and 2021(May–September).The response functions of the FE coefficient(the ratio of daily FEML to ET_(o))to the individual factors of VSM and LAI were determined using upper boundary lines of scatter diagrams of measured data.The framework of the daily FE(FE_(ML))model was established by multiplying the response functions to individual factors and then calibrated and validated using measured data to assess the FE response to environmental and canopy conditions.Results:(1)The FE coefficient increased first rapidly and then slowly with rising VSM but decreased slowly with rising LAI.(2)The simple daily FE(FE_(ML))model developed by coupling the impacts of ET_(o),LAI,and VSM in this study performed well for predicting FE.(3)The impacts of ET_(o),LAI,and VSM were quantified using the FE(FE_(ML))model,e.g.,at a given VSM,the impact of ETo on FE increased obviously with decreasing LAI;at a given ET_(o),the impact of LAI on FE increased with rising VSM.(4)In the two study years,when directly using the microlysimeter measurement,the real FE on the forest floor was overestimated when the VSM in microlysimeters was above 0.215 but underestimated below 0.215 due to the difference in VSM from the forest floor.Thus,the VSM on the forest floor should be input into the FE model for estimating the real FE on the forest floor.Conclusions:The daily FE of larch plantation is controlled by three main factors of environmental(ET_(o) and VSM)and canopy conditions(LAI).The variation in daily FE on the forest floor can be well estimated using the simple FE model coupling the effects of the three main factors and by inputting the VSM on the forest floor into the model to avoid the errors when directly using the microlysimeter measurement with different VSMs from the forest floor.The developed FE model and suggested prediction approach are helpful to estimate the FE response to changing conditions,and to guide forest management practices when saving water by thinning is required. 展开更多
关键词 Larch plantation Forest floor evapotranspiration Reference evapotranspiration Soil water content Canopy structure
在线阅读 下载PDF
Analysis of Reference Evapotranspiration Change and Its Impact Factors in Australia
18
作者 谢今范 曾丽红 +1 位作者 宋开山 张柏 《Agricultural Science & Technology》 CAS 2009年第5期30-33,共4页
[ Objective] To discuss regional response of reference evapotranspiration ( ETo ) to global climate change and its influencing factors. [Method] Penman-Monteith equation was adopted to calculate ET0 in Australia fro... [ Objective] To discuss regional response of reference evapotranspiration ( ETo ) to global climate change and its influencing factors. [Method] Penman-Monteith equation was adopted to calculate ET0 in Australia from 1998 to 2007. Spatiotemporal change characteristics were analyzed by using GIS spatial analysis tools and relationships between ETo and main climate factors were also analyzed. [ Resultsl The results showed that multi-year average ET0 increased from the east and south part to the northwest part and inland, and its distribution was consistent with climate zones. Multi-year average ETo of the whole region was 1 750 mm, obtaining minimum and maximum values in 2000 and 2002 respectively. Regional ETo decreased in the order of summer, spring, autumn and winter; January and December got the highest monthly ET0, while June got the lowest value 79.55 mm. ETo positively correlated with mean temperature and solar radiation, R2 for each were 0.83 and 0.94, while the relationship between ETo and average relative humidity was negative, and precipitation had no significant relationship with ET0. [ Conclusion] This research could provide important reference for crop water requirement study and making irrigation method for Australia. 展开更多
关键词 AUSTRALIA Reference evapotranspiration Penman-Monteith equation Spatiotemporal change
在线阅读 下载PDF
Study on Artificial Neural Network Model for Crop Evapotranspiration
19
作者 冯雪 潘英华 张振华 《Agricultural Science & Technology》 CAS 2007年第3期11-14,41,共5页
Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( met... Based on potted plant experiment, BP-artifieial neural network was used to simulate crop evapotranspiration and 3 kinds of artificial neural network models were constructed as ET1 (meteorological factors), ET2( meteorological factors and sowing days) and ET3 (meteorological factors, sowing days and water content). And the predicted result was compared with actual value ET that was obtained by weighing method. The results showed that the ET3 model had higher calculation precision and an optimum BP-artificial neural network model for calculating crop evapotranspiration. 展开更多
关键词 Crop evapotranspiration BP-artificial neural network Fitting precision
在线阅读 下载PDF
Study on Evapotranspiration Regularity of 3 Forages in Eastern Qinghai Province
20
作者 朱春来 《Agricultural Science & Technology》 CAS 2009年第4期117-119,124,共4页
The transpiration rate and transpiration quantity'of whole plants and foliages of Bromus innerrnis, Medicago sativa and Agropyron cristatum are measured by using improved quick and continuous weighting after being cu... The transpiration rate and transpiration quantity'of whole plants and foliages of Bromus innerrnis, Medicago sativa and Agropyron cristatum are measured by using improved quick and continuous weighting after being cut off method (QCWC). The results show that transpiration rate of branches and foliages of Agropyron cristatum is highest in 3 forages, Medicago sativa is second and Bromus innermis is lowest. From July to September, the average transpiration quantity of whole plants and foliages of 3 forages is highest in August, September is second and July is lowest. 展开更多
关键词 Eastern Qinghai Bromus innermis. Medicago sativa Agropyron cristatum evapotranspiration
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部