Intense evaporation in areas with loess-like sulfate saline soils has resulted in significant ecological challenges that include water shortages and soil salinization.Investigating evaporation rate in loess-like sulfa...Intense evaporation in areas with loess-like sulfate saline soils has resulted in significant ecological challenges that include water shortages and soil salinization.Investigating evaporation rate in loess-like sulfate saline soils under varying salt contents carries crucial implications for understanding regional water loss processes,predicting soil salinization advancement,and formulating effective ecological management strategies.Therefore,this study sampled the loess-like sulfate saline soil that is widely distributed in western China as experimental materials and investigated the impact of different initial salt contents(0.00%,0.50%,1.50%,3.00%,and 5.00%)on the evaporation rate,water content,and temperature of soil.The results showed that the evaporation rate decreased with increasing initial salt content.After a salt accumulation layer formed on the soil surface,the water content of the surface soil fluctuated.An increase in the initial salt content resulted in a corresponding increase in the surface temperature.Considering the evaporation characteristics of loess-like sulfate saline soil and the impact of an anomalous increase in surface soil water content on soil surface resistance,this study proposed a modified evaporation model on the basis of Fujimaki's evaporation model of saline soil by introducing a correction coefficientβto modify the soil surface resistance.A comparison of the calculated evaporation rates before and after the modification with the measured evaporation rates revealed a significant improvement in the calculation accuracy of the modified model,indicating that the modified model is capable of more accurately simulating the evaporation rate of sulfate saline soil with different initial salt contents.This paper proposes an effective method for calculating the evaporation rate of loess-like sulfate saline soils,providing a theoretical basis for evaporation research in saline soil.展开更多
The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and indus...The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and industrial processes as well as in numerous engineering applications.Therefore,understanding and predicting the dynamics of evaporating flows have become of primary importance.Recent efforts have been addressed using the method of Smoothed Particle Hydrodynamics(SPH),which has proven to be very efficient in correctly handling the intrinsic complexity introduced by the multiscale nature of the evaporation process.This paper aims to provide an overview of published work on SPH-based simulations related to the evaporation of drops suspended in static and convective environments and impacting on heated solid surfaces.After a brief theoretical account of the main ingredients necessary for the modeling of drop evaporation,the fundamental aspects of SPH are revisited along with the various existing formulations that have been implemented to address the challenges imposed by the physics of evaporating flows.In the following sections,the paper summarizes the results of SPH-based simulations of drop evaporation and ends with a few comments on the limitations of the current state-of-the-art SPHsimulations and future lines of research.展开更多
Porous liquid-conducting micro-heat exchangers have garnered considerable attention for their role in efficient heat dissipation in small electronic devices.This demand highlights the need for advanced mathematical mo...Porous liquid-conducting micro-heat exchangers have garnered considerable attention for their role in efficient heat dissipation in small electronic devices.This demand highlights the need for advanced mathematical models to optimize the selection of mixed heat exchange media and equipment design.A capillary bundle evaporation model for porous liquid-conducting media was developed based on the conjugate mass transfer evaporation rate prediction model of a single capillary tube,supplemented by mercury injection experimental data.Theoretical and experimental comparisons were conducted using 1,2-propanediol-glycerol(PG-VG)mixtures at molar ratios of 1:9,3:7,5:5,and 7:3 at 120,150,and 180℃.The Jouyban-Acree model was implemented to enhance the evaporation rate predictions.For the 7:3 PG-VG mixture at 180℃under the experimental conditions of the thermal medium,the model's error reduced from 16.75%to 10.84%post-correction.Overall,the mean relative error decreased from 11.76%to 5.98%after correction.展开更多
The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the p...The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials.In solar interfacial evaporation,photothermal materials exhibit a wide range of additional characteristics,but a systematic overview is lacking.This paper encompasses an examination of various categories and principles pertaining to photothermal materials,as well as the structural design considerations for salt-resistant materials.Additionally,we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment.Furthermore,potential solutions to enhance the durability of photothermal materials are also highlighted,such as the rational design of micro/nano-structures,the use of adhesives,the addition of anti-corrosion coatings,and the preparation of self-healing surfaces.The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances,presenting a guide for the forthcoming advancement of solar evaporation technology.展开更多
This review examines the processes of laser heating,melting,evaporation,fragmentation,and breakdown of metal nanoparticles,as well as the dependences and values of the threshold laser parameters that initiate these pr...This review examines the processes of laser heating,melting,evaporation,fragmentation,and breakdown of metal nanoparticles,as well as the dependences and values of the threshold laser parameters that initiate these processes.Literature results are analyzed from experimental studies of these processes with gold,silver,and other nanoparticles,including laser surface melting and evaporation of nanoparticles and Coulomb fragmentation of nanoparticles by ultrashort laser pulses.A theoretical model and description of the thermal mechanisms of mentioned processes with metal(solid)nanoparticles in a liquid(solid)medium,initiated by the action of laser pulses with the threshold fluences,are presented.Comparison of the obtained results with experimental data confirms the accuracy of the model and makes it possible to use them to evaluate the parameters of laser thermal processing of nanoparticles.Applications of the processes include the laser melting,reshaping,and fragmentation of nanoparticles,the formation of nanostructures and nanonetworks,the laser processing of nanoparticles located on substrates,and their cladding on surfaces in various laser nanotechnologies.The use of laser ignition,combustion,and incandescence of nanoparticles is discussed,as is the use of nanoparticle-triggered laser breakdown for spectroscopy.These laser processes are used in photothermal nanotechnologies,nanoenergy,laser processing of nanoparticles,nonlinear optical devices,high-temperature material science,etc.In general,this review presents a modern picture of the state of laser technology and high-temperature processes with nanoparticles and their applications,being focused on the latest publications with an emphasis on recent results from 2021-2024.展开更多
Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a n...Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a new two-dimensional hydrogel evaporator is urgently needed to alleviate this problem.Here,a double layer hydrogel evaporator was designed by twice vacuum filtration.Furthermore,through the arched design and the introduction of concentrated brine drainage system,the hydrogel evaporator has enhanced water transportation and tailored water transportation path.Such a unique drainage evaporation system greatly improves the stability of the evaporator.Thereby,a good balance is established between photothermal conversion and water supply,and solar energy is utilized efficiently.It can remain stable in continuous evaporation for up to 12 h with an excellent evaporation rate of 2.70 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the drainage system realized the 1.8×10^(-10)mol m^(-2)s^(-1)diffusion flux of concentrated brine.Through one-time freeze-drying preparation,an arch-shaped drainage evaporator was used to prepare an evaporation area of more than 20 cm^(2).With the self-made condensate collecting device in outdoor environment,the fresh water yield reaches 7.5 L m^(-2)d^(-1).This provides a new scheme for building a new hydrogel evaporator and solving the fresh water crisis.展开更多
Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a sub...Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials.展开更多
Fiber fabrics have been wildly utilized for solar interracial evaporators to address freshwater scarcity.However,the complex and expensive manufacturing processes remain limited to their scalable development.Herein,a ...Fiber fabrics have been wildly utilized for solar interracial evaporators to address freshwater scarcity.However,the complex and expensive manufacturing processes remain limited to their scalable development.Herein,a fabric-based Janus interracial evaporator is efficiently fabricated on a large scale by integrating an extremely innovative self-designed melt-centrifugal spinning technology with spray coating technology.The prepared fabric-based Janus interfacial evaporator has differential hydrophilicity,uneven surfaces,and channels that allow moisture escape.Benefiting from the excellent photothermai conversion of graphene oxide and the charge transfer actions of titanium dioxide,such a multifunction evaporator can reach a high evaporation rate of 1.72 kg m^(-2)h^(-1)under 1 sun irradiation,a superior antibacterial rate of 99%,excellent photocatalytic degradation,and effective thermoelectric ability simultaneously.Moreover,it also shows fantastic performance in salt resistance,recyclable evaporation,and real desalination,This work demonstrates a high-efficiency,cost-effective,multifunctional,and scalable strategy for high-performance fiber fabrics solar interfacial evaporation.展开更多
A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a genera...A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a generated droplet jet of complex structure into a directed flow of evaporating droplets falling in a vertical tube.Images of falling droplets captured by a high-speed camera through a window in the vertical channel wall are used to determine the sizes and velocities of individual droplets.The computational modeling of droplet motion and evaporation proved useful at all stages of the experimental work:from selecting the position of the vertical channel to processing the experimental data.It was found that even a 0.1%mass concentration of the dissolved ionic salt KCl has a considerable effect on decreasing the evaporation rate of the droplets.In contrast,a typical fungicide with a mass concentration of 2.5%has only a slight impact on the evaporation rate.The laboratory results enabled the authors to refine the evaporation model of water droplets to account for the presence of dissolved substances.Modified models of this type are expected to be useful in controling crop spraying and also in other potential applications.展开更多
The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosiv...The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results.展开更多
Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains ...Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize.We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures.Significantly,the amphipathy of silk fibroin(SF)and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant.The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities.As a proof-of-concept,the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency(~64 dB).Also,the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties.The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process,expecting far superior evaporation performance(~3.5 kg m^(-2)h^(-1))and salt tolerance capability compared to other hydrogel evaporators.Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties.展开更多
Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water d...Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water deteriorates the distillate quality,threatening human health.Herein,we constructed a carbonbased bimetallic(C/FeCo)photothermal membrane by electrospinning technique.Results illustrated that the membrane can catalytically degrade VOCs during SIE with persulfate(PDS)mediation.PDS,as well as phenol,was mainly reacted on the interface of the photothermal membrane instead of in the bulk solution.The interception efficiency of phenol achieved nearly 100%using the C/FeCo membrane during SIE.Hydroxyl radical(•OH),sulfate radical(SO_(4)•−),superoxide radical(O_(2)•−),and singlet oxygen(^(1)O_(2))were identified as the main active substances to degrade VOCs.We also conducted SIE experiments using actual river water to evaluate the practical performance of the C/FeCo membrane.This work holds the promise of VOCs interception during SIE and enlarges the application of solar distillation in water/wastewater treatment.展开更多
In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,pol...In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,polar N sites,and excellent light-to-heat conversion ability.The controlled graphitization temperature was optimized to improve the activity state of metal species.The results reveal that Co_(3)O_(4) nanoparticles incorporated thin-layer carbon formed onto the Mn-confined mesoporous silica,and more Co(Ⅱ)and Mn(Ⅲ)were generated in the MS-Co-500N_(2) compared to MS-Co-500Air,which could cause the accelerated reaction cycles in the potassium peroxymonosulfate complex salt(PMS)activation.The degradation experiments demonstrated that the catalyst almost completely degraded biphenol A within 10 min with the reaction rate constant of 0.56 min−1,nearly 205 times enhancement compared to the MS-Co-500Air.The free radicals trapping and quenching control demonstrated the dominant role of ^(1)O_(2) and·O_(2) in the degradation process.Due to the efficient incorporation of Co_(3)O_(4) nanoparticles and thin-layer carbon,the photothermal conversion properties were explored and utilized for solar-driving interface water evaporation and cleanwater recovery.To explore the practical application possibility in treating complicated polluted wastewater,the MS-Co-500N_(2) materials were fixed on the melamine sponge by Ca ions-trigger alginate crosslinking strategy,and the integrated monolith evaporator shows an excellent water evaporation performance(1.52 kg·m^(−2)·h^(−1))and synchronous pollutant removal in biphenol A(94%,10 min),carbamazepine(92%,10 min),oxytetracycline(84%,20 min)and norfloxacin(84%,20 min).展开更多
Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain su...Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications.展开更多
Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evapor...Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.展开更多
Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) sol...Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.展开更多
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Fur...Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.展开更多
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp...Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.展开更多
Photothermal material applied in environmental governance has attracted growing attention.By combining the Stober method and dopamine-triggered coating strategy,Co-Mn precursor was in situ incorporated into the poly d...Photothermal material applied in environmental governance has attracted growing attention.By combining the Stober method and dopamine-triggered coating strategy,Co-Mn precursor was in situ incorporated into the poly dopamine(PDA)layer over the surface of silica cores.Afterwards,a unique photothermal nanosphere with SiO_(2)core and thin carbon layer and dual Co-Mn oxides shell was allowed to form by sequential heat treatment in the inert atmosphere(SiO_(2)@CoMn/C).The bimetallic fraction of Co/Mn in the carbon layer and post-treatment calcination temperature was comprehensively tuned to optimize the peroxymonosulfate(PMS)activation performance of the catalyst.The state of bimetallic species was studied including their physical distribution,chemical valence,and interplay by various characterizations.Impressively,Co oxides appear as dominant monodispersed nanoparticles(~10 nm),while Mn with cluster-like morphology is observed to uniformly distribute over thin-layer carbon and adhered to the surface of SiO_(2)nanospheres(~250 nm).The calcined temperature could tune the oxidized state of Co species,leading to the optimization of the catalytic performance of introduced dual metal species.As a result,this obtained optimal catalyst integrated the advantages of exposed bimetallic CoMn species and N-doped thin carbon to deliver excellent catalytic PMS activation performance and photothermal synergetic catalytic mineralization ability for diversiform pollutants.Further reactions condition controls and anion interference studies were conducted to identify the adaptability of the optimal catalyst.Moreover,the application of solar-driven interfacial water evaporation using optimal SiO_(2)@Co_3Mn_1/C-600 catalyst was explored,showing a high water evaporation rate of 1.48 kg·m^(-2)·h^(-1)and an efficiency of 95.2%,further revealing a comprehensive governance functionality of obtained material in the complex pollution condition.展开更多
基金supported by the National Natural Science Foundation of China(51769013,52168052)。
文摘Intense evaporation in areas with loess-like sulfate saline soils has resulted in significant ecological challenges that include water shortages and soil salinization.Investigating evaporation rate in loess-like sulfate saline soils under varying salt contents carries crucial implications for understanding regional water loss processes,predicting soil salinization advancement,and formulating effective ecological management strategies.Therefore,this study sampled the loess-like sulfate saline soil that is widely distributed in western China as experimental materials and investigated the impact of different initial salt contents(0.00%,0.50%,1.50%,3.00%,and 5.00%)on the evaporation rate,water content,and temperature of soil.The results showed that the evaporation rate decreased with increasing initial salt content.After a salt accumulation layer formed on the soil surface,the water content of the surface soil fluctuated.An increase in the initial salt content resulted in a corresponding increase in the surface temperature.Considering the evaporation characteristics of loess-like sulfate saline soil and the impact of an anomalous increase in surface soil water content on soil surface resistance,this study proposed a modified evaporation model on the basis of Fujimaki's evaporation model of saline soil by introducing a correction coefficientβto modify the soil surface resistance.A comparison of the calculated evaporation rates before and after the modification with the measured evaporation rates revealed a significant improvement in the calculation accuracy of the modified model,indicating that the modified model is capable of more accurately simulating the evaporation rate of sulfate saline soil with different initial salt contents.This paper proposes an effective method for calculating the evaporation rate of loess-like sulfate saline soils,providing a theoretical basis for evaporation research in saline soil.
文摘The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and industrial processes as well as in numerous engineering applications.Therefore,understanding and predicting the dynamics of evaporating flows have become of primary importance.Recent efforts have been addressed using the method of Smoothed Particle Hydrodynamics(SPH),which has proven to be very efficient in correctly handling the intrinsic complexity introduced by the multiscale nature of the evaporation process.This paper aims to provide an overview of published work on SPH-based simulations related to the evaporation of drops suspended in static and convective environments and impacting on heated solid surfaces.After a brief theoretical account of the main ingredients necessary for the modeling of drop evaporation,the fundamental aspects of SPH are revisited along with the various existing formulations that have been implemented to address the challenges imposed by the physics of evaporating flows.In the following sections,the paper summarizes the results of SPH-based simulations of drop evaporation and ends with a few comments on the limitations of the current state-of-the-art SPHsimulations and future lines of research.
基金the funding support of National Natural Science Foundation of China(21978204)。
文摘Porous liquid-conducting micro-heat exchangers have garnered considerable attention for their role in efficient heat dissipation in small electronic devices.This demand highlights the need for advanced mathematical models to optimize the selection of mixed heat exchange media and equipment design.A capillary bundle evaporation model for porous liquid-conducting media was developed based on the conjugate mass transfer evaporation rate prediction model of a single capillary tube,supplemented by mercury injection experimental data.Theoretical and experimental comparisons were conducted using 1,2-propanediol-glycerol(PG-VG)mixtures at molar ratios of 1:9,3:7,5:5,and 7:3 at 120,150,and 180℃.The Jouyban-Acree model was implemented to enhance the evaporation rate predictions.For the 7:3 PG-VG mixture at 180℃under the experimental conditions of the thermal medium,the model's error reduced from 16.75%to 10.84%post-correction.Overall,the mean relative error decreased from 11.76%to 5.98%after correction.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LR23C160001)Scientific Research Startup Foundation of Zhejiang Ocean University(No.11034150220006).
文摘The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials.In solar interfacial evaporation,photothermal materials exhibit a wide range of additional characteristics,but a systematic overview is lacking.This paper encompasses an examination of various categories and principles pertaining to photothermal materials,as well as the structural design considerations for salt-resistant materials.Additionally,we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment.Furthermore,potential solutions to enhance the durability of photothermal materials are also highlighted,such as the rational design of micro/nano-structures,the use of adhesives,the addition of anti-corrosion coatings,and the preparation of self-healing surfaces.The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances,presenting a guide for the forthcoming advancement of solar evaporation technology.
文摘This review examines the processes of laser heating,melting,evaporation,fragmentation,and breakdown of metal nanoparticles,as well as the dependences and values of the threshold laser parameters that initiate these processes.Literature results are analyzed from experimental studies of these processes with gold,silver,and other nanoparticles,including laser surface melting and evaporation of nanoparticles and Coulomb fragmentation of nanoparticles by ultrashort laser pulses.A theoretical model and description of the thermal mechanisms of mentioned processes with metal(solid)nanoparticles in a liquid(solid)medium,initiated by the action of laser pulses with the threshold fluences,are presented.Comparison of the obtained results with experimental data confirms the accuracy of the model and makes it possible to use them to evaluate the parameters of laser thermal processing of nanoparticles.Applications of the processes include the laser melting,reshaping,and fragmentation of nanoparticles,the formation of nanostructures and nanonetworks,the laser processing of nanoparticles located on substrates,and their cladding on surfaces in various laser nanotechnologies.The use of laser ignition,combustion,and incandescence of nanoparticles is discussed,as is the use of nanoparticle-triggered laser breakdown for spectroscopy.These laser processes are used in photothermal nanotechnologies,nanoenergy,laser processing of nanoparticles,nonlinear optical devices,high-temperature material science,etc.In general,this review presents a modern picture of the state of laser technology and high-temperature processes with nanoparticles and their applications,being focused on the latest publications with an emphasis on recent results from 2021-2024.
基金the financial support of the National Natural Science Foundation of China(No.52075309)the Youth Innovation Team of Shaanxi Universities(21JP021)。
文摘Hydrogel has developed into a very important platform in solar interface evaporator.However,the current hydrogel evaporators are usually three-dimensional evaporators,which will consume a lot of raw materials.Thus,a new two-dimensional hydrogel evaporator is urgently needed to alleviate this problem.Here,a double layer hydrogel evaporator was designed by twice vacuum filtration.Furthermore,through the arched design and the introduction of concentrated brine drainage system,the hydrogel evaporator has enhanced water transportation and tailored water transportation path.Such a unique drainage evaporation system greatly improves the stability of the evaporator.Thereby,a good balance is established between photothermal conversion and water supply,and solar energy is utilized efficiently.It can remain stable in continuous evaporation for up to 12 h with an excellent evaporation rate of 2.70 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the drainage system realized the 1.8×10^(-10)mol m^(-2)s^(-1)diffusion flux of concentrated brine.Through one-time freeze-drying preparation,an arch-shaped drainage evaporator was used to prepare an evaporation area of more than 20 cm^(2).With the self-made condensate collecting device in outdoor environment,the fresh water yield reaches 7.5 L m^(-2)d^(-1).This provides a new scheme for building a new hydrogel evaporator and solving the fresh water crisis.
基金supported by H2020-MSCA-RISE-778104–ThermaSMART,Royal Society(IEC\NSFC\211210)doctoral degree scholarship of China Scholarship Council(CSC).
文摘Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials.
基金the National Key Research and Development Program of China(Grant No.2022YFC3901902)the National Natural Science Foundation of China(Grant Nos.52203037,52103031,and 52073107)。
文摘Fiber fabrics have been wildly utilized for solar interracial evaporators to address freshwater scarcity.However,the complex and expensive manufacturing processes remain limited to their scalable development.Herein,a fabric-based Janus interracial evaporator is efficiently fabricated on a large scale by integrating an extremely innovative self-designed melt-centrifugal spinning technology with spray coating technology.The prepared fabric-based Janus interfacial evaporator has differential hydrophilicity,uneven surfaces,and channels that allow moisture escape.Benefiting from the excellent photothermai conversion of graphene oxide and the charge transfer actions of titanium dioxide,such a multifunction evaporator can reach a high evaporation rate of 1.72 kg m^(-2)h^(-1)under 1 sun irradiation,a superior antibacterial rate of 99%,excellent photocatalytic degradation,and effective thermoelectric ability simultaneously.Moreover,it also shows fantastic performance in salt resistance,recyclable evaporation,and real desalination,This work demonstrates a high-efficiency,cost-effective,multifunctional,and scalable strategy for high-performance fiber fabrics solar interfacial evaporation.
基金financially supported by the Russian Science Foundation(project No.24-29-00303:https://rscf.ru/project/24-29-00303/,accessed on 01 July 2025).
文摘A new experimental method is developed to investigate the effect of dissolved substances on the evaporation rate of small water droplets suspended in the atmosphere.The laboratory setup is based on converting a generated droplet jet of complex structure into a directed flow of evaporating droplets falling in a vertical tube.Images of falling droplets captured by a high-speed camera through a window in the vertical channel wall are used to determine the sizes and velocities of individual droplets.The computational modeling of droplet motion and evaporation proved useful at all stages of the experimental work:from selecting the position of the vertical channel to processing the experimental data.It was found that even a 0.1%mass concentration of the dissolved ionic salt KCl has a considerable effect on decreasing the evaporation rate of the droplets.In contrast,a typical fungicide with a mass concentration of 2.5%has only a slight impact on the evaporation rate.The laboratory results enabled the authors to refine the evaporation model of water droplets to account for the presence of dissolved substances.Modified models of this type are expected to be useful in controling crop spraying and also in other potential applications.
基金supported by the Natural Science Foundation of China(No.52236001)The support from Research Grants Council of Hong Kong,China(No.CityU 15218820)was also appreciated。
文摘The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results.
基金support from the National Natural Science Foundation of China(Nos.51922020,52273064 and 52221006)the Fundamental Research Funds for the Central Universities(BHYC1707B)is gratefully acknowledged.
文摘Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize.We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures.Significantly,the amphipathy of silk fibroin(SF)and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant.The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities.As a proof-of-concept,the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency(~64 dB).Also,the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties.The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process,expecting far superior evaporation performance(~3.5 kg m^(-2)h^(-1))and salt tolerance capability compared to other hydrogel evaporators.Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties.
基金the National Natural Science Foundation of China(No.52070052)the National Natural Science Foundation of China(No.52300082)+3 种基金National Key Research and Development Program of China(No.2022YFB3805903)the State Key Laboratory of Urban Water Resource and Environment in HIT of China(No.2022TS14)the China Postdoctoral Science Foundation(No.2023M730881)Postdoctoral Fellowship Program of CPSF(No.GZB20230964)。
文摘Solar interfacial evaporation(SIE),is currently one of the most potential water supply technologies in the remote,insular,and disaster-stricken areas.However,the existence of volatile organic compounds(VOCs)in water deteriorates the distillate quality,threatening human health.Herein,we constructed a carbonbased bimetallic(C/FeCo)photothermal membrane by electrospinning technique.Results illustrated that the membrane can catalytically degrade VOCs during SIE with persulfate(PDS)mediation.PDS,as well as phenol,was mainly reacted on the interface of the photothermal membrane instead of in the bulk solution.The interception efficiency of phenol achieved nearly 100%using the C/FeCo membrane during SIE.Hydroxyl radical(•OH),sulfate radical(SO_(4)•−),superoxide radical(O_(2)•−),and singlet oxygen(^(1)O_(2))were identified as the main active substances to degrade VOCs.We also conducted SIE experiments using actual river water to evaluate the practical performance of the C/FeCo membrane.This work holds the promise of VOCs interception during SIE and enlarges the application of solar distillation in water/wastewater treatment.
基金supported by the National Natural Science Foundation of China(No.21908085)the China Postdoctoral Science Foundation(No.2023M731422)+3 种基金and the Science and Technology Plan School-Enterprise Cooperation Industry-University-Research Forward-Looking Project of Zhangjiagang(No.ZKYY2341)Suzhou Hospital Association Infection Management Special Research(No.SZSYYXH-2023-ZY1)Suzhou Medical Key Discipline of Occupational Medicine(No.SZXK202115)Jiangsu Undergraduate Innovative Training Program(No.SJCX23_2163).
文摘In this study,cobalt-incorporated polydopamine coating onto Mn-modified mesoporous silica and successive graphitization treatment make the resulting composite afford abundant porosity,multiple metal active species,polar N sites,and excellent light-to-heat conversion ability.The controlled graphitization temperature was optimized to improve the activity state of metal species.The results reveal that Co_(3)O_(4) nanoparticles incorporated thin-layer carbon formed onto the Mn-confined mesoporous silica,and more Co(Ⅱ)and Mn(Ⅲ)were generated in the MS-Co-500N_(2) compared to MS-Co-500Air,which could cause the accelerated reaction cycles in the potassium peroxymonosulfate complex salt(PMS)activation.The degradation experiments demonstrated that the catalyst almost completely degraded biphenol A within 10 min with the reaction rate constant of 0.56 min−1,nearly 205 times enhancement compared to the MS-Co-500Air.The free radicals trapping and quenching control demonstrated the dominant role of ^(1)O_(2) and·O_(2) in the degradation process.Due to the efficient incorporation of Co_(3)O_(4) nanoparticles and thin-layer carbon,the photothermal conversion properties were explored and utilized for solar-driving interface water evaporation and cleanwater recovery.To explore the practical application possibility in treating complicated polluted wastewater,the MS-Co-500N_(2) materials were fixed on the melamine sponge by Ca ions-trigger alginate crosslinking strategy,and the integrated monolith evaporator shows an excellent water evaporation performance(1.52 kg·m^(−2)·h^(−1))and synchronous pollutant removal in biphenol A(94%,10 min),carbamazepine(92%,10 min),oxytetracycline(84%,20 min)and norfloxacin(84%,20 min).
基金financially supported by the Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Grants Council of Hong Kong SAR(16200720)+3 种基金Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)Research Institute of Sports Science and Technology(Project No.P0043535)Research Institute of Advanced Manufacturing(Project No.P0046125)the start-up fund for new recruits of Poly U(Project No.P0038855 and P0038858)。
文摘Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications.
基金supported by the Natural Science Foundation of Hebei Province(D202450411)the Basic Research Programme of Chinese Academy of Geological Sciences(CAGS)(YK202302).
文摘Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.
基金the financial support from the National Natural Science Foundation of China (Grant No. 52172038, 22179017)National Key Research and Development Program of China (Nos. 2022YFB4101600, 2022YFB4101601)。
文摘Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金financially supported by the Research Grants Council of Hong Kong SAR(16200720)Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)+2 种基金Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Institute for Advanced Manufucturing(Project No.CD8R)the startup fund for new recruits of PolyU(Project Nos.P0038855 and P0038858)。
文摘Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.
基金supported by the National Natural Science Foundation of China(Grant Nos.52162012,52262014,22368019)Key Research and Development Project of Hainan Province(Grant Nos.ZDYF2022SHFZ053,ZDYF2021GXJS209)+1 种基金Science and Technology Innovation Talent Platform Fund for South China Sea New Star of Hainan Province(Grant No.NHXXRCXM202305)Open Research Project of State Key Laboratory of Marine Resource Utilization in South China Sea(Grant No.MRUKF2023020).
文摘Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.
基金financially supported by the China National Natural Science Foundation(No.21908085)China Postdoctoral Science Foundation(No.2022M711686)Jiangsu Provincial Founds for the Young Scholars(No.BK20190961)。
文摘Photothermal material applied in environmental governance has attracted growing attention.By combining the Stober method and dopamine-triggered coating strategy,Co-Mn precursor was in situ incorporated into the poly dopamine(PDA)layer over the surface of silica cores.Afterwards,a unique photothermal nanosphere with SiO_(2)core and thin carbon layer and dual Co-Mn oxides shell was allowed to form by sequential heat treatment in the inert atmosphere(SiO_(2)@CoMn/C).The bimetallic fraction of Co/Mn in the carbon layer and post-treatment calcination temperature was comprehensively tuned to optimize the peroxymonosulfate(PMS)activation performance of the catalyst.The state of bimetallic species was studied including their physical distribution,chemical valence,and interplay by various characterizations.Impressively,Co oxides appear as dominant monodispersed nanoparticles(~10 nm),while Mn with cluster-like morphology is observed to uniformly distribute over thin-layer carbon and adhered to the surface of SiO_(2)nanospheres(~250 nm).The calcined temperature could tune the oxidized state of Co species,leading to the optimization of the catalytic performance of introduced dual metal species.As a result,this obtained optimal catalyst integrated the advantages of exposed bimetallic CoMn species and N-doped thin carbon to deliver excellent catalytic PMS activation performance and photothermal synergetic catalytic mineralization ability for diversiform pollutants.Further reactions condition controls and anion interference studies were conducted to identify the adaptability of the optimal catalyst.Moreover,the application of solar-driven interfacial water evaporation using optimal SiO_(2)@Co_3Mn_1/C-600 catalyst was explored,showing a high water evaporation rate of 1.48 kg·m^(-2)·h^(-1)and an efficiency of 95.2%,further revealing a comprehensive governance functionality of obtained material in the complex pollution condition.