The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The mi...The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.展开更多
We develop a fabrication process for the superconducting phase qubits in which Josephson junctions for both the qubit and superconducting quantum interference device(SQUID) detector are prepared by shadow evaporatio...We develop a fabrication process for the superconducting phase qubits in which Josephson junctions for both the qubit and superconducting quantum interference device(SQUID) detector are prepared by shadow evaporation with a suspended bridge. Al junctions with areas as small as 0.05 μm^2 are fabricated for the qubit, in which the number of the decoherencecausing two-level systems(TLS) residing in the tunnel barrier and proportional to the junction area are greatly reduced. The measured energy spectrum shows no avoided crossing arising from coherent TLS in the experimentally reachable flux bias range of the phase qubit, which demonstrates the energy relaxation time T1 and dephasing time Tφ on the order of 100 ns and 50 ns, respectively. We discuss several possible origins of decoherence from incoherent or weakly-coupled coherent TLS and further improvements of the qubit performance.展开更多
Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The s...Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film.展开更多
As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing...As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing the response surface method is exploited to predict the optimal process variables for preparing high-performance Cu catalysts,unraveling that the selectivity towards methane or ethylene can be simply modulated by varying the evaporation parameters,among which the Cu film thickness is the most pivotal factor to determine the product selectivity.The predicted optimal catalyst with a low Cu thickness affords a high methane Faradaic efficiency of 70.6%at the partial current density of 211.8 m A cm^(-2),whereas that of a high Cu thickness achieves a high ethylene selectivity of 66.8%at267.2 m A cm^(-2)in the flow cell.Further structure-performance correlation and in-situ electrospectroscopic measurements attribute the high methane selectivity to isolated Cu clusters with low packing density and monotonous lattice structure,and the high ethylene efficiency to coalesced Cu nanoparticles with rich grain boundaries and lattice defects.The high Cu packing density and crystallographic diversity is of essence to promoting C–C coupling by stabilizing*CO and suppressing*H coverage on the catalyst surface.This work highlights the implementation of scientific and mathematic methods to uncover optimal catalysts and mechanistic understandings toward selective electrochemical CO_(2)reduction.展开更多
PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (...PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-NazO) melts when contacts with the high temperature liquid metal, and solidifies on the surface of the substrate with the decrease of temperature. Therefore, the ceramic coating was successfully prepared with the formation of the bonding interface with the substrate, Beside the influence of coating layer thickness, the vacuum level was also investigated. Further analysis indicates that oxide inclusions and decomposition products of foam pattern had a significant effect on the bonding interface: To obtain a good bonding interface between the ceramic coating and the substrate, the metal liquid oxidation and inclusions must be decreased and the decomposition products of foam pattern should be exhausted from the EPC coating completely.展开更多
CdSe films are of great interest for use in thin film photoelectric devices. A simple chemical precipitation method is adopted for the first time to synthesise CdSe powder. Films on glass obtained at different substra...CdSe films are of great interest for use in thin film photoelectric devices. A simple chemical precipitation method is adopted for the first time to synthesise CdSe powder. Films on glass obtained at different substrate temperatures TS such as 300, 373, 423 and 473 K have been characterised by X-ray diffraction, optical absorption and Hall measurements.展开更多
Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure dete...Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure determination. The results of these characterizations along with the initial results of all thin film CdS/CdTe solar cells are presented in this paper展开更多
Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films i...Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.展开更多
The reactions induced by intermediate energy heavy ions are investigated.The evap-orated fragment multiplicity and excitation energy distributions are calculated and comparedwith the experimental data of the reaction ...The reactions induced by intermediate energy heavy ions are investigated.The evap-orated fragment multiplicity and excitation energy distributions are calculated and comparedwith the experimental data of the reaction Ar+Ag at 50 and 70 MeV/u.展开更多
The multiplicity distribtuion of evaporated fragments in relativistic nucleus-nucleus collisions are discussed.The calculated results are in agreement with the exper-imental data in the energy range from 3.7 to 200 Ge...The multiplicity distribtuion of evaporated fragments in relativistic nucleus-nucleus collisions are discussed.The calculated results are in agreement with the exper-imental data in the energy range from 3.7 to 200 GeV/N.展开更多
Theoretical analysis and experimental study on the thickness distribution of Ta_(2)O_(5) film evaporated on the inner-face of a hemispherical substrate are demonstrated. It is derived that the value of n/R and L/R inf...Theoretical analysis and experimental study on the thickness distribution of Ta_(2)O_(5) film evaporated on the inner-face of a hemispherical substrate are demonstrated. It is derived that the value of n/R and L/R influence the film thickness distribution(where R is the radius of the hemisphere, n and L are the horizontal distance and vertical height between the evaporation source and the center of the hemisphere, respectively). The whole hemispherical substrate can be coated when n≤L+R, otherwise there is a "blind area" on the substrate when the substrate is self-rotating. A hemispherical composite substrate with a radius of 200 mm is coated with Ta_(2)O_(5) protective film under a certain configuration, the thickness of Ta_(2)O_(5) film at the edge is 0.372 times the film at the vertex which shows that the evaporation characteristics of Ta_(2)O_(5) tend to be a point source.展开更多
Al coated NdFeB magnets obtained by vacuum evaporation technique were densified by high energy ball milling method.The surface morphology,metal composition and micro structure of the coatings were characterized by sca...Al coated NdFeB magnets obtained by vacuum evaporation technique were densified by high energy ball milling method.The surface morphology,metal composition and micro structure of the coatings were characterized by scanning electron microscopy,X-ray diffraction and X-ray photoelectron spectroscopy,respectively.The anticorrosive properties were investigated by potentiodynamic polarization curves and neutral salt spray test.The pores in the Al coatings of columnar crystals(Al) induced by the evaporation technique,were apparently filled in the following ball milling process,leading to the densification of Al coatings and the evident improvement of the anticorrosive performances.When treated with ball milling for 30 min,the sample achieves the best anticorrosive performances with the self-corrosion potential of-0.87 V,self-corrosion current density of 1.65 μA/cm^(2) and the neutral salt spray(NSS) time of 144 h(red rust).The improvement of the anticorro sive performances of vacuum evaporated Al coating mainly lies in the densification effect of the coating,which depends on different loading conditions of ball milling process.展开更多
A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin fil...A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin films are investigated where films with 100 nm thickness were fabricated on the different types of substrates viz. soda–lime glass, indium-doped tin oxide(ITO)-and fl uorine-doped tin oxide(FTO)-coated glass substrates, and silicon wafer using electron beam evaporation. The X-ray diffraction patterns confirmed that deposited thin films showed cubic phase and had(111) as predominant orientation where the structural parameters were observed to be varied with nature of substrates. The ohmic behaviour of the CdS films was disclosed by current–voltage characteristics, whereas the scanning electron microscopy micrograph revealed the uniform deposition of the CdS films with the presence of round-shaped grains. The elemental analysis confirmed the CdS films deposition where the Cd/S weight percentage ratio was changed with nature of substrates. The direct energy band gap was observed in the 1.63–2.50 eV range for the films grown on different substrates. The investigated properties of thin CdS layers demonstrated that the selection of substrate(in terms of nature) during device fabrication plays a crucial role.展开更多
This paper presents a study on thickness dependent physical properties of cadmium selenide thin films. The films of thickness 445, 631 and 810 nm were deposited employing thermal evaporation technique on glass and ITO...This paper presents a study on thickness dependent physical properties of cadmium selenide thin films. The films of thickness 445, 631 and 810 nm were deposited employing thermal evaporation technique on glass and ITO-coated glass substrates followed by thermal annealing in air atmosphere at 200 °C. These films were subjected to X-ray diffractometer, UV-Vis spectrophotometer, scanning electron microscopy(SEM) and electrometer for structural, optical,surface morphological and electrical analysis respectively. The structural analysis reveals that the films are nanocrystalline in nature with cubic phase and preferred orientation(111). The crystallographic parameters such as lattice constant, interplanar spacing, grain size, internal strain, dislocation density, number of crystallites per unit area and texture coefficient are calculated and discussed. The optical band gap is found in the range 1.75-1.92 e V and observed to increase with thickness.The SEM study shows that the annealed films are uniform, fully covered and well defined. The electrical analysis shows that the conductivity is varied with film thickness and found within the order of semiconductor behavior.展开更多
A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the ...A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the quantity of evaporated water during the drying process is dependent on the drying time, with the evaporating surface being constant. It was found that the validity of the model is rooted on the expression lnγ = (lnt/Logβ)N where both sides of the equation are correspondingly almost equal. The maximum deviation of the model-predicted quantity of evaporated water from the corresponding experimental value is less than 19% which is quite within the acceptable deviation range of experimental results. Water evaporation rate as obtained from experiment and derived model were evaluated to be 0.0536 and 0.0337g mins -1 respectively.展开更多
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l...Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.展开更多
The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The in...The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.展开更多
In this work, the homogenous thin films of sulfosalt Sn4Sb6S13 were successfully synthesized by the thermal evaporation technique onto coming 7059 glass substrates heated at various temperatures in the range of 30--2...In this work, the homogenous thin films of sulfosalt Sn4Sb6S13 were successfully synthesized by the thermal evaporation technique onto coming 7059 glass substrates heated at various temperatures in the range of 30--200 ℃. The surface morphology and structural characteristics of Sn4Sb6S13 films were analyzed by atomic force microscopy, X-ray diffraction, and energy-dispersive X-ray, respectively. The X-ray diffraction analysis revealed that Sn4Sb6S13 thin films crystallized in monoclinic structure according to a preferential direction (6 11). An improvement in the structural properties by increasing the substrate temperature was observed. The values of some important parameters such as absorption coefficient (x), band gap (Eg), refractive index (n), extinction coefficient (k), and dielectric constant (Eg) of thin film were determined. The absorption coefficient was larger than 105 cm-l in the visible range. The electron transition of Sn4Sb6S13 films was direct allowed with the values that decreased (2-1.69 eV) by increasing substrate temperature from 30 to 200 ℃,The dispersion data obeyed the single oscillator relation of the Wemple-DiDomenico model and Cauchy model. The electrical free carrier susceptibility and the carrier concentration of the effective mass ratio were estimated according to the model of Spitzer and Fan.展开更多
Amorphous Si_(1-x)Sn_x alloys have been prepared by co-evaporation onto substrates maintained at liquid nitrogen temperature. Their atomic structure is investigated using density measurements, scanning high-energy ele...Amorphous Si_(1-x)Sn_x alloys have been prepared by co-evaporation onto substrates maintained at liquid nitrogen temperature. Their atomic structure is investigated using density measurements, scanning high-energy electron diffraction and Mossbauer spectroscopy. The optical and electrical properties are reported. Then, a method to hydrogenate the films during the evaporation process is described and applied to the preparation of amorphous semiconductors from pure silicon to pure tin. Finally, multilayers of type Si / Si:H / ... or Si:H / Si:D / ... are studied. The modulation of hydrogen is shown by low-angle neutron scattering and measurements of hydrogen diffusivity are presented.展开更多
Cu2ZnSn(S,Se)4(CZTSSe) thin film was prepared using a simple two-step approach based on the single-source evaporation and synchronous sulfo-selenization.Composition,microstructure,morphology,and properties of the ...Cu2ZnSn(S,Se)4(CZTSSe) thin film was prepared using a simple two-step approach based on the single-source evaporation and synchronous sulfo-selenization.Composition,microstructure,morphology,and properties of the asprepared CZTSSe thin films were investigated.XRD and Raman patterns confirmed the formation of single-phase CZTSSe solid solutions.SEM results showed that the CZTSSe thin film had a uniform morphology and large grains.EDS results revealed the composition of CZTSSe film was Cu:Zn:Sn:S:Se = 23.7:12.6:12.2:37.7:13.8(in at%),which was in accordance with the stoichiometric Cu2ZnSn(S,Se)4.The optical band gap of CZTSSe thin film evaluated from its UV–Vis spectrum was 1.33 eV.The resistivity,carrier concentration,and mobility were 0.53 X cm,7.9 9 1018cm3,and 7.5 cm2/(Vs),respectively.展开更多
文摘The effect of 10% Si (mole fraction) addition on TiAlSiN coatings was studied. Ti0.5Al0.5N, Ti0.5Al0.4Si0.1N and Ti0.55Al0.35Si0.1N coatings were deposited on WC?Co substrates by cathodic arc evaporation. The microstructure and mechanical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nano-indentation measurement and scratch test. The mechanisms of how Si affects the properties and failure modes of TiAlSiN coatings were also discussed. The results show that the addition of 10% Si results in the formation of nc-(Ti,Al,Si)N/a-Si3N4 nano-composite structure. The hardness and toughness of TiAlSiN coatings increase, whereas the coating adhesion strength decreases. Compared with Ti0.55Al0.35Si0.1N coating, Ti0.5Al0.4Si0.1N coating has higher hardness but lower toughness. The dominant failure mode of TiAlN coating is wedging spallation due to low toughness and strong interfacial adhesion. The dominant failure mode of TiAlSiN coatings is buckling spallation due to improved toughness and weakened interfacial adhesion.
基金supported by the National Basic Research Program of China(Grant Nos.2014CB921202,2015CB921104,and 2016YFA0300601)the National Natural Science Foundation of China(Grant Nos.91321208 and 11674380)
文摘We develop a fabrication process for the superconducting phase qubits in which Josephson junctions for both the qubit and superconducting quantum interference device(SQUID) detector are prepared by shadow evaporation with a suspended bridge. Al junctions with areas as small as 0.05 μm^2 are fabricated for the qubit, in which the number of the decoherencecausing two-level systems(TLS) residing in the tunnel barrier and proportional to the junction area are greatly reduced. The measured energy spectrum shows no avoided crossing arising from coherent TLS in the experimentally reachable flux bias range of the phase qubit, which demonstrates the energy relaxation time T1 and dephasing time Tφ on the order of 100 ns and 50 ns, respectively. We discuss several possible origins of decoherence from incoherent or weakly-coupled coherent TLS and further improvements of the qubit performance.
文摘Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film.
基金supported by the National Key R&D Program of China(2020YFB1505703)the National Natural Science Foundation of China(22072101,22075193)+2 种基金supported by the Natural Science Foundation of Jiangsu Province(BK20211306)the Six Talent Peaks Project in Jiangsu Province(TD-XCL-006)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘As a highly tempting technology to close the carbon cycle,electrochemical CO_(2)reduction calls for the development of highly efficient and durable electrocatalysts.In the current study,Design of Experiments utilizing the response surface method is exploited to predict the optimal process variables for preparing high-performance Cu catalysts,unraveling that the selectivity towards methane or ethylene can be simply modulated by varying the evaporation parameters,among which the Cu film thickness is the most pivotal factor to determine the product selectivity.The predicted optimal catalyst with a low Cu thickness affords a high methane Faradaic efficiency of 70.6%at the partial current density of 211.8 m A cm^(-2),whereas that of a high Cu thickness achieves a high ethylene selectivity of 66.8%at267.2 m A cm^(-2)in the flow cell.Further structure-performance correlation and in-situ electrospectroscopic measurements attribute the high methane selectivity to isolated Cu clusters with low packing density and monotonous lattice structure,and the high ethylene efficiency to coalesced Cu nanoparticles with rich grain boundaries and lattice defects.The high Cu packing density and crystallographic diversity is of essence to promoting C–C coupling by stabilizing*CO and suppressing*H coverage on the catalyst surface.This work highlights the implementation of scientific and mathematic methods to uncover optimal catalysts and mechanistic understandings toward selective electrochemical CO_(2)reduction.
基金supported by the National Natural Science Foundation of China (Grant No.50775085)
文摘PbO-ZnO-Na20 ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-NazO) melts when contacts with the high temperature liquid metal, and solidifies on the surface of the substrate with the decrease of temperature. Therefore, the ceramic coating was successfully prepared with the formation of the bonding interface with the substrate, Beside the influence of coating layer thickness, the vacuum level was also investigated. Further analysis indicates that oxide inclusions and decomposition products of foam pattern had a significant effect on the bonding interface: To obtain a good bonding interface between the ceramic coating and the substrate, the metal liquid oxidation and inclusions must be decreased and the decomposition products of foam pattern should be exhausted from the EPC coating completely.
文摘CdSe films are of great interest for use in thin film photoelectric devices. A simple chemical precipitation method is adopted for the first time to synthesise CdSe powder. Films on glass obtained at different substrate temperatures TS such as 300, 373, 423 and 473 K have been characterised by X-ray diffraction, optical absorption and Hall measurements.
文摘Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure determination. The results of these characterizations along with the initial results of all thin film CdS/CdTe solar cells are presented in this paper
文摘Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.
基金The Project Supported by Shanxi Provincial Foundation of Leading Man in Science,Shanxi Provincial Foundation of Scholarly Exchange and China National Education Committee Foundation of Scholarly Exchange
文摘The reactions induced by intermediate energy heavy ions are investigated.The evap-orated fragment multiplicity and excitation energy distributions are calculated and comparedwith the experimental data of the reaction Ar+Ag at 50 and 70 MeV/u.
基金The project supported by the National Natural Science Foundation of China
文摘The multiplicity distribtuion of evaporated fragments in relativistic nucleus-nucleus collisions are discussed.The calculated results are in agreement with the exper-imental data in the energy range from 3.7 to 200 GeV/N.
基金supported by the Foundation of Science and Technology on Vacuum Technology and Physics Laboratory (No.ZD171902)。
文摘Theoretical analysis and experimental study on the thickness distribution of Ta_(2)O_(5) film evaporated on the inner-face of a hemispherical substrate are demonstrated. It is derived that the value of n/R and L/R influence the film thickness distribution(where R is the radius of the hemisphere, n and L are the horizontal distance and vertical height between the evaporation source and the center of the hemisphere, respectively). The whole hemispherical substrate can be coated when n≤L+R, otherwise there is a "blind area" on the substrate when the substrate is self-rotating. A hemispherical composite substrate with a radius of 200 mm is coated with Ta_(2)O_(5) protective film under a certain configuration, the thickness of Ta_(2)O_(5) film at the edge is 0.372 times the film at the vertex which shows that the evaporation characteristics of Ta_(2)O_(5) tend to be a point source.
基金supported by the Base of the Key Technologies R & D Program of Anhui Province (1704c0402195)the Fundamental Research Funds for the Central Universities (PA2019GDPK0043,JZ2019HGBZ0142,JZ2019YYPY0291)。
文摘Al coated NdFeB magnets obtained by vacuum evaporation technique were densified by high energy ball milling method.The surface morphology,metal composition and micro structure of the coatings were characterized by scanning electron microscopy,X-ray diffraction and X-ray photoelectron spectroscopy,respectively.The anticorrosive properties were investigated by potentiodynamic polarization curves and neutral salt spray test.The pores in the Al coatings of columnar crystals(Al) induced by the evaporation technique,were apparently filled in the following ball milling process,leading to the densification of Al coatings and the evident improvement of the anticorrosive performances.When treated with ball milling for 30 min,the sample achieves the best anticorrosive performances with the self-corrosion potential of-0.87 V,self-corrosion current density of 1.65 μA/cm^(2) and the neutral salt spray(NSS) time of 144 h(red rust).The improvement of the anticorro sive performances of vacuum evaporated Al coating mainly lies in the densification effect of the coating,which depends on different loading conditions of ball milling process.
文摘A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin films are investigated where films with 100 nm thickness were fabricated on the different types of substrates viz. soda–lime glass, indium-doped tin oxide(ITO)-and fl uorine-doped tin oxide(FTO)-coated glass substrates, and silicon wafer using electron beam evaporation. The X-ray diffraction patterns confirmed that deposited thin films showed cubic phase and had(111) as predominant orientation where the structural parameters were observed to be varied with nature of substrates. The ohmic behaviour of the CdS films was disclosed by current–voltage characteristics, whereas the scanning electron microscopy micrograph revealed the uniform deposition of the CdS films with the presence of round-shaped grains. The elemental analysis confirmed the CdS films deposition where the Cd/S weight percentage ratio was changed with nature of substrates. The direct energy band gap was observed in the 1.63–2.50 eV range for the films grown on different substrates. The investigated properties of thin CdS layers demonstrated that the selection of substrate(in terms of nature) during device fabrication plays a crucial role.
基金financial support under UGC-BSR fellowship No.F.25-1/2013-14(BSR)/7-123/2007(BSR)
文摘This paper presents a study on thickness dependent physical properties of cadmium selenide thin films. The films of thickness 445, 631 and 810 nm were deposited employing thermal evaporation technique on glass and ITO-coated glass substrates followed by thermal annealing in air atmosphere at 200 °C. These films were subjected to X-ray diffractometer, UV-Vis spectrophotometer, scanning electron microscopy(SEM) and electrometer for structural, optical,surface morphological and electrical analysis respectively. The structural analysis reveals that the films are nanocrystalline in nature with cubic phase and preferred orientation(111). The crystallographic parameters such as lattice constant, interplanar spacing, grain size, internal strain, dislocation density, number of crystallites per unit area and texture coefficient are calculated and discussed. The optical band gap is found in the range 1.75-1.92 e V and observed to increase with thickness.The SEM study shows that the annealed films are uniform, fully covered and well defined. The electrical analysis shows that the conductivity is varied with film thickness and found within the order of semiconductor behavior.
文摘A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the quantity of evaporated water during the drying process is dependent on the drying time, with the evaporating surface being constant. It was found that the validity of the model is rooted on the expression lnγ = (lnt/Logβ)N where both sides of the equation are correspondingly almost equal. The maximum deviation of the model-predicted quantity of evaporated water from the corresponding experimental value is less than 19% which is quite within the acceptable deviation range of experimental results. Water evaporation rate as obtained from experiment and derived model were evaluated to be 0.0536 and 0.0337g mins -1 respectively.
基金supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS).SERIS is supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)support from the Science and Engineering Research Council of Singapore with Grant No.A1898b0043Singapore NRF CRP Grant No.NRF-CRP24-2020-0002.
文摘Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.
文摘The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.
文摘In this work, the homogenous thin films of sulfosalt Sn4Sb6S13 were successfully synthesized by the thermal evaporation technique onto coming 7059 glass substrates heated at various temperatures in the range of 30--200 ℃. The surface morphology and structural characteristics of Sn4Sb6S13 films were analyzed by atomic force microscopy, X-ray diffraction, and energy-dispersive X-ray, respectively. The X-ray diffraction analysis revealed that Sn4Sb6S13 thin films crystallized in monoclinic structure according to a preferential direction (6 11). An improvement in the structural properties by increasing the substrate temperature was observed. The values of some important parameters such as absorption coefficient (x), band gap (Eg), refractive index (n), extinction coefficient (k), and dielectric constant (Eg) of thin film were determined. The absorption coefficient was larger than 105 cm-l in the visible range. The electron transition of Sn4Sb6S13 films was direct allowed with the values that decreased (2-1.69 eV) by increasing substrate temperature from 30 to 200 ℃,The dispersion data obeyed the single oscillator relation of the Wemple-DiDomenico model and Cauchy model. The electrical free carrier susceptibility and the carrier concentration of the effective mass ratio were estimated according to the model of Spitzer and Fan.
文摘Amorphous Si_(1-x)Sn_x alloys have been prepared by co-evaporation onto substrates maintained at liquid nitrogen temperature. Their atomic structure is investigated using density measurements, scanning high-energy electron diffraction and Mossbauer spectroscopy. The optical and electrical properties are reported. Then, a method to hydrogenate the films during the evaporation process is described and applied to the preparation of amorphous semiconductors from pure silicon to pure tin. Finally, multilayers of type Si / Si:H / ... or Si:H / Si:D / ... are studied. The modulation of hydrogen is shown by low-angle neutron scattering and measurements of hydrogen diffusivity are presented.
基金financially supported by the National Natural Science Foundation of China (Nos.51275509 and 51175491)
文摘Cu2ZnSn(S,Se)4(CZTSSe) thin film was prepared using a simple two-step approach based on the single-source evaporation and synchronous sulfo-selenization.Composition,microstructure,morphology,and properties of the asprepared CZTSSe thin films were investigated.XRD and Raman patterns confirmed the formation of single-phase CZTSSe solid solutions.SEM results showed that the CZTSSe thin film had a uniform morphology and large grains.EDS results revealed the composition of CZTSSe film was Cu:Zn:Sn:S:Se = 23.7:12.6:12.2:37.7:13.8(in at%),which was in accordance with the stoichiometric Cu2ZnSn(S,Se)4.The optical band gap of CZTSSe thin film evaluated from its UV–Vis spectrum was 1.33 eV.The resistivity,carrier concentration,and mobility were 0.53 X cm,7.9 9 1018cm3,and 7.5 cm2/(Vs),respectively.