AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-d...AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-dimethoxynaphthalene is cleaved readily and predominantly against the β(7)-position, whereas scission of β-ethereal bonds of 1,8-diaroylated 2,7-dimethoxynaphthalene hardly undergoes like the non-aroylated mother frame compound of 2,7-dimethoxynaphthalene.展开更多
Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and ...Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallowsurface soils,increasing evidence shows that these compounds can leach into the groundwater.Herein,we compare the leachabilities of PBDEs vs.PAHs from contaminated soils collected at an e-waste recycling site in Tianjin,China.Considerable amounts of BDE-209(0.3–2 ng/L)and phenanthrene(42–106 ng/L),the most abundant PBDE and PAH at the site,are detected in the effluents of columns packed with contaminated soils,with the specific concentrations varying with hydrodynamic and solution chemistry conditions.Interestingly,the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles,whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent,but showing essentially no correlation with the concentration of mineral particles.The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive,as PBDEs and PAHs often co-exist at e-waste recycling sites(particularly at the sites wherein incineration is being practiced)and share many similarities in terms of physicochemical properties.One possible explanation is that due to its extremely low solubility,BDE-209 predominantly exists in free-phase(i.e.,as solid(nano)particles),whereas the more soluble phenanthrene is mainly sorbed to soil organic matter.Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management.展开更多
Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potenti...Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.展开更多
文摘AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-dimethoxynaphthalene is cleaved readily and predominantly against the β(7)-position, whereas scission of β-ethereal bonds of 1,8-diaroylated 2,7-dimethoxynaphthalene hardly undergoes like the non-aroylated mother frame compound of 2,7-dimethoxynaphthalene.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804202)the National Natural Science Foundation of China(Nos.22020102004 and 22125603)+1 种基金Tianjin Municipal Science and Technology Bureau(No.21JCZDJC00280)the Fundamental Research Funds for the Central Universities,and the Ministry of Education of China(No.T2017002).
文摘Polybrominated biphenyl ethers(PBDEs)and polycyclic aromatic hydrocarbons(PAHs)are commonly detected contaminants at e-waste recycling sites.Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallowsurface soils,increasing evidence shows that these compounds can leach into the groundwater.Herein,we compare the leachabilities of PBDEs vs.PAHs from contaminated soils collected at an e-waste recycling site in Tianjin,China.Considerable amounts of BDE-209(0.3–2 ng/L)and phenanthrene(42–106 ng/L),the most abundant PBDE and PAH at the site,are detected in the effluents of columns packed with contaminated soils,with the specific concentrations varying with hydrodynamic and solution chemistry conditions.Interestingly,the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles,whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent,but showing essentially no correlation with the concentration of mineral particles.The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive,as PBDEs and PAHs often co-exist at e-waste recycling sites(particularly at the sites wherein incineration is being practiced)and share many similarities in terms of physicochemical properties.One possible explanation is that due to its extremely low solubility,BDE-209 predominantly exists in free-phase(i.e.,as solid(nano)particles),whereas the more soluble phenanthrene is mainly sorbed to soil organic matter.Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management.
基金supported by the National Key Research and Development Program of China(No.2019YFC1804202)the National Natural Science Foundation of China(No.22020102004)+1 种基金the Tianjin Municipal Science and Technology Bureau(No.21JCZDJC00280)the Fundamental Research Funds for the Central Universities by the Ministry of Education of China(No.T2017002).
文摘Polybromodiphenyl ethers(PBDEs),the widely used flame retardants,are common contaminants in surface soils at e-waste recycling sites.The association of PBDEs with soil colloids has been observed,indicating the potential risk to groundwater due to colloid-facilitated transport.However,the extent to which soil colloidsmay enhance the spreading of PBDEs in groundwater is largely unknown.Herein,we report the co-transport of decabromodiphenyl ester(BDE-209)and soil colloids in saturated porous media.The colloids released froma soil sample collected at an e-waste recycling site in Tianjin,China,contain high concentration of PBDEs,with BDE-209 being the most abundant conger(320±30 mg/kg).The colloids exhibit relatively high mobility in saturated sand columns,under conditions commonly observed in groundwater environments.Notably,under all the tested conditions(i.e.,varying flow velocity,pH,ionic species and ionic strength),the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids,even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved.Additionally,the mass of BDE-209 retained in the columns also correlates strongly with themass of retained colloids.Apparently,the PBDEs remain bound to soil colloids during transport in porous media.Findings in this study indicate that soil colloidsmay significantly promote the transport of PBDEs in groundwater by serving as an effective carrier.This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.