期刊文献+
共找到7,146篇文章
< 1 2 250 >
每页显示 20 50 100
A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation 被引量:1
1
作者 Hamza Murad Khan Anwar Khan +3 位作者 Santos Gracia Villar Luis Alonso DzulLopez Abdulaziz Almaleh Abdullah M.Al-Qahtani 《Computers, Materials & Continua》 2025年第5期3369-3388,共20页
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models... Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes. 展开更多
关键词 Short-term traffic prediction sequential time series prediction TPE tree-structured parzen estimator LSTM hyperparameter tuning hybrid prediction model
在线阅读 下载PDF
Distributed predefined-time estimator-based affine formation target-enclosing maneuver control for cooperative underactuated quadrotor UAVs with fault-tolerant capabilities
2
作者 Yang XU Yuanfang QU +2 位作者 Delin LUO Haibin DUAN Zhengyu GUO 《Chinese Journal of Aeronautics》 2025年第1期471-490,共20页
The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer... The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations. 展开更多
关键词 Affine formation maneuver control Target tracking Fixed-time control Quadrotor unmanned aerial vehicle Target enclosing Predefined-time estimation
原文传递
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system 被引量:1
3
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection Model predictive control Uncertainty and disturbance estimator Nonlinear system
在线阅读 下载PDF
NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES
4
作者 韩月才 张丁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期143-160,共18页
We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces... We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology. 展开更多
关键词 reflected stochastic differential equation discretely observed process continuously observed process Nadaraya-Watson estimator asymptotic behavior
在线阅读 下载PDF
Asymptotic normality of error density estimator in stationary and explosive autoregressive models
5
作者 WU Shi-peng YANG Wen-zhi +1 位作者 GAO Min HU Shu-he 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期140-158,共19页
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity... In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors. 展开更多
关键词 explosive autoregressive models residual density estimator asymptotic distribution association sequence
在线阅读 下载PDF
On convergence of covariance matrix of empirical Bayes hyper-parameter estimator
6
作者 Yue Ju Biqiang Mu Tianshi Chen 《Control Theory and Technology》 EI CSCD 2024年第2期149-162,共14页
Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as t... Regularized system identification has become the research frontier of system identification in the past decade.One related core subject is to study the convergence properties of various hyper-parameter estimators as the sample size goes to infinity.In this paper,we consider one commonly used hyper-parameter estimator,the empirical Bayes(EB).Its convergence in distribution has been studied,and the explicit expression of the covariance matrix of its limiting distribution has been given.However,what we are truly interested in are factors contained in the covariance matrix of the EB hyper-parameter estimator,and then,the convergence of its covariance matrix to that of its limiting distribution is required.In general,the convergence in distribution of a sequence of random variables does not necessarily guarantee the convergence of its covariance matrix.Thus,the derivation of such convergence is a necessary complement to our theoretical analysis about factors that influence the convergence properties of the EB hyper-parameter estimator.In this paper,we consider the regularized finite impulse response(FIR)model estimation with deterministic inputs,and show that the covariance matrix of the EB hyper-parameter estimator converges to that of its limiting distribution.Moreover,we run numerical simulations to demonstrate the efficacy of ourtheoretical results. 展开更多
关键词 Regularized system identification Hyper-parameter estimator Empirical Bayes Convergence of covariance matrix
原文传递
A New Class of Biased Linear Estimators in Deficient-rank Linear Models 被引量:1
7
作者 归庆明 段清堂 +1 位作者 周巧云 郭建锋 《Chinese Quarterly Journal of Mathematics》 CSCD 2001年第1期71-78,共8页
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es... In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment. 展开更多
关键词 deficient_rank model best linear minimum bias estimator generalized principal components estimator mean squared error condition number
在线阅读 下载PDF
Estimator of Scale Parameter in a Subclass of the Exponential Family under Symmetric Entropy Loss 被引量:2
8
作者 徐宝 王德辉 王瑞庭 《Northeastern Mathematical Journal》 CSCD 2008年第5期447-457,共11页
In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum ris... In this paper we investigate the estimator for the rth power of the scale parameter in a class of exponential family under symmetric entropy loss L(θ, δ) = v(θ/δ + δ/θ - 2). An exact form of the minimum risk equivariant estimator under symmetric entropy loss is given, and the minimaxity of the minimum risk equivariant estimator is proved. The results with regard to admissibility and inadmissibility of a class of linear estimators of the form cT(X) + d are given, where T(X) Gamma(v, θ). 展开更多
关键词 symmetric entropy loss minimum risk equivariant estimator Bayes estimator MINIMAXITY admissible estimator INADMISSIBILITY
在线阅读 下载PDF
Generalized Class of Mean Estimators with Known Measures for Outliers Treatment
9
作者 Ibrahim M.Almanjahie Amer Ibrahim Al-Omari +1 位作者 Emmanuel J.Ekpenyong Mir Subzar 《Computer Systems Science & Engineering》 SCIE EI 2021年第7期1-15,共15页
In estimation theory,the researchers have put their efforts to develop some estimators of population mean which may give more precise results when adopting ordinary least squares(OLS)method or robust regression techni... In estimation theory,the researchers have put their efforts to develop some estimators of population mean which may give more precise results when adopting ordinary least squares(OLS)method or robust regression techniques for estimating regression coefficients.But when the correlation is negative and the outliers are presented,the results can be distorted and the OLS-type estimators may give misleading estimates or highly biased estimates.Hence,this paper mainly focuses on such issues through the use of non-conventional measures of dispersion and a robust estimation method.Precisely,we have proposed generalized estimators by using the ancillary information of non-conventional measures of dispersion(Gini’s mean difference,Downton’s method and probabilityweighted moment)using ordinary least squares and then finally adopting the Huber M-estimation technique on the suggested estimators.The proposed estimators are investigated in the presence of outliers in both situations of negative and positive correlation between study and auxiliary variables.Theoretical comparisons and real data application are provided to show the strength of the proposed generalized estimators.It is found that the proposed generalized Huber-M-type estimators are more efficient than the suggested generalized estimators under the OLS estimation method considered in this study.The new proposed estimators will be useful in the future for data analysis and making decisions. 展开更多
关键词 Product estimators ratio estimators regression estimators ordinary least square Huber M mean squared error EFFICIENCY
在线阅读 下载PDF
SPADE:A spatial information assisted collision distance estimator for robotic arm
10
作者 Jiakang Zhou Yue Cao +1 位作者 Yu-Xuan Ren Steve Feng Shu 《Journal of Automation and Intelligence》 2024年第4期250-259,共10页
The movement of a robotic arm in the working environment requires efficient and adequate motion planning.The procedure of collision detection based on the object geometry is crucial to plan the motion trajectories,and... The movement of a robotic arm in the working environment requires efficient and adequate motion planning.The procedure of collision detection based on the object geometry is crucial to plan the motion trajectories,and usually requires intensive resource and considerable time.Many learning-based collision detection schemes have been developed to improve the efficiency of collision detection.However,current learning-based collision detection methods are either not accurate enough or prone to low efficiency.We propose a simple,yet highly accurate collision distance estimator,a spatial information assisted distance estimator,i.e.,SPADE,in which spatial information of both robotic arms and obstacles are encoded by multiple encoders.With evaluation in both static and dynamic environments,our model shows higher prediction accuracy than multiple baselines,and higher accuracy can be corroborated by experiment with our model under the premise of equal inference efficiency.In addition,our model shows better robustness than baseline in real-world path planning. 展开更多
关键词 Collision detection Collision distance estimation Neural networks Multiple encoders
在线阅读 下载PDF
Robustness of Minimum Norm Quadratic Unbiased Estimator of Variance Under the General Linear Model
11
作者 张宝学 罗季 李馨 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期97-100,共4页
Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are... Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example. 展开更多
关键词 general linear model orthogonal projector minimum norm quadratic unbiased estimator
在线阅读 下载PDF
Jackknifed Liu Estimator in Linear Regression Models
12
作者 HU Hongchang XIA Yuhe 《Wuhan University Journal of Natural Sciences》 CAS 2013年第4期331-336,共6页
In this paper, we introduce a generalized Liu estimator and jackknifed Liu estimator in a linear regression model with correlated or heteroscedastic errors. Therefore, we extend the Liu estimator. Under the mean squar... In this paper, we introduce a generalized Liu estimator and jackknifed Liu estimator in a linear regression model with correlated or heteroscedastic errors. Therefore, we extend the Liu estimator. Under the mean square error(MSE), the jackknifed estimator is superior to the Liu estimator and the jackknifed ridge estimator. We also give a method to select the biasing parameter for d. Furthermore, a numerical example is given to illustvate these theoretical results. 展开更多
关键词 linear regression model correlated or heteroscedastic errors generalized Liu estimator jackknifed Liu estimator mean square error
原文传递
Two New Relative Efficiencies of the Weighted Mixed Estimator with Respect to the Ordinary Least Squares Estimator in Linear Regression Models
13
作者 Min LI Jibo WU 《Journal of Mathematical Research with Applications》 CSCD 2016年第1期109-116,共8页
In this paper, we present two relative efficiency of the weighted mixed estimator in respect of least squares estimator. We also derive the lower and upper bounds of those relative efficiencies.
关键词 ordinary least squares estimator weighted mixed estimator relative efficiency linear regression models
原文传递
A KERNEL ESTIMATOR OF A DENSITY FUNCTION IN MULTIVARIATE CASE FROM RANDOMLY CENSORED DATA
14
作者 周勇 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期170-180,共11页
A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error ... A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied. 展开更多
关键词 Kernel density estimator asymptotic normality product-limit estimator mean square error and censored data.
在线阅读 下载PDF
A Stochastic Restricted s–K Estimator in the Linear Model
15
作者 Daojiang HE Yan WU 《Journal of Mathematical Research with Applications》 CSCD 2014年第3期362-370,共9页
In this paper, we propose a stochastic restricted s-K estimator in the linear model with additional stochastic linear restrictions by combining the ordinary mixed estimator (OME) with the s-K estimator. It is shown ... In this paper, we propose a stochastic restricted s-K estimator in the linear model with additional stochastic linear restrictions by combining the ordinary mixed estimator (OME) with the s-K estimator. It is shown that the proposed estimator is superior to the OME and the s-K estimator under the mean squared error matrix criterion under some conditions. Finally, a numerical example and a Monte Carlo simulation study are given to verify the theoretical results. 展开更多
关键词 the ordinary mixed estimator 8-K estimator stochastic restricted s-K estima-tor the mean squared error matrix.
原文传递
Separate-Type Estimators for Estimating Population Ratio in Post-Stratified Sampling Using Variable Transformation
16
作者 Aloy Chijioke Onyeka Chinyeaka Hostensia Izunobi Iheanyi Sylvester Iwueze 《Open Journal of Statistics》 2015年第1期27-34,共8页
The study proposes, along the line of [1], six separate-type estimators for estimating the population ratio of two variables in post-stratified sampling, using variable transformation. Properties of the proposed estim... The study proposes, along the line of [1], six separate-type estimators for estimating the population ratio of two variables in post-stratified sampling, using variable transformation. Properties of the proposed estimators were obtained up to first order approximations, both for achieved sample configurations (conditional argument) and over repeated samples of fixed size n (unconditional argument). Efficiency conditions, under which the proposed separate-type estimators would perform better than the associated customary separate-type estimators in terms of having smaller mean squared errors, were obtained. Furthermore, conditions under which some of the proposed separate-type estimators would perform better than other proposed separate-type estimators were also obtained. The optimum estimators among the proposed separate-type estimators were obtained and an empirical illustration confirmed the theoretical results. 展开更多
关键词 Variable Transformation Separate-Type estimator OPTIMUM estimatorS Ratio Product and Regression-Type estimatorS Mean Squared Error
在线阅读 下载PDF
A Geometric Approach to Conditioning and the Search for Minimum Variance Unbiased Estimators
17
作者 James E. Marengo David L. Farnsworth 《Open Journal of Statistics》 2021年第3期437-442,共6页
Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is... Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process. 展开更多
关键词 Conditional Variance Formula CONDITIONING Geometric Representation Minimum Variance estimator Rao-Blackwell Theorem Sufficient Statistic Unbiased estimator
在线阅读 下载PDF
Robust Estimators for Poisson Regression
18
作者 Idriss Abdelmajid Idriss Weihu Cheng 《Open Journal of Statistics》 2023年第1期112-118,共7页
The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation st... The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators. 展开更多
关键词 Poisson Regression Model Maximum Likelihood estimator Robust Estimation Contaminated Model Weighted Maximum Likelihood estimator
在线阅读 下载PDF
An Analysis of Two-Dimensional Image Data Using a Grouping Estimator
19
作者 Kazumitsu Nawata 《Open Journal of Statistics》 2022年第1期33-48,共16页
Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regio... Machine learning methods, one type of methods used in artificial intelligence, are now widely used to analyze two-dimensional (2D) images in various fields. In these analyses, estimating the boundary between two regions is basic but important. If the model contains stochastic factors such as random observation errors, determining the boundary is not easy. When the probability distributions are mis-specified, ordinal methods such as probit and logit maximum likelihood estimators (MLE) have large biases. The grouping estimator is a semiparametric estimator based on the grouping of data that does not require specific probability distributions. For 2D images, the grouping is simple. Monte Carlo experiments show that the grouping estimator clearly improves the probit MLE in many cases. The grouping estimator essentially makes the resolution density lower, and the present findings imply that methods using low-resolution image analyses might not be the proper ones in high-density image analyses. It is necessary to combine and compare the results of high- and low-resolution image analyses. The grouping estimator may provide theoretical justifications for such analysis. 展开更多
关键词 Two-Dimensional Image Analysis High-Resolution and Low-Resolution Im-ages Semiparametric estimator Machine Learning Grouping estimator
在线阅读 下载PDF
On the Restricted Almost Unbiased Ridge Estimator in Logistic Regression
20
作者 Nagarajah Varathan Pushpakanthie Wijekoon 《Open Journal of Statistics》 2016年第6期1076-1084,共10页
In this article, the restricted almost unbiased ridge logistic estimator (RAURLE) is proposed to estimate the parameter in a logistic regression model with exact linear re-strictions when there exists multicollinearit... In this article, the restricted almost unbiased ridge logistic estimator (RAURLE) is proposed to estimate the parameter in a logistic regression model with exact linear re-strictions when there exists multicollinearity among explanatory variables. The performance of the proposed estimator over the maximum likelihood estimator (MLE), ridge logistic estimator (RLE), almost unbiased ridge logistic estimator (AURLE), and restricted maximum likelihood estimator (RMLE) with respect to different ridge parameters is investigated through a simulation study in terms of scalar mean square error. 展开更多
关键词 MULTICOLLINEARITY Ridge estimator Almost Unbiased Ridge Logistic estimator Linear Restrictions Scalar Mean Square Error
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部