When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
Objective:To explore the application value of the extended nursing intervention mode in senile dementia patients.Methods:A total of 60 cases of Alzheimer’s disease patients were selected as the research subjects and ...Objective:To explore the application value of the extended nursing intervention mode in senile dementia patients.Methods:A total of 60 cases of Alzheimer’s disease patients were selected as the research subjects and divided using the random number table method into the control group and the observation group,each with 30 cases.The control group adopted conventional nursing,while the observation group adopted the extended nursing model of this study.The self-care ability,quality of life,cognitive function,and the frequency of unsafe behaviors were compared between the two groups.Results:After 6 months of intervention,the results showed that the scores of all dimensions in the relevant data tables such as the activity of daily living(ADL)scale,simple intelligence scale,and health survey scale in the observation group were higher than those in the control group,and the differences were statistically significant(P<0.05).The incidence of unsafe behaviors in the observation group was lower than that in the control group,and the difference was statistically significant(χ^(2)=5.963,P<0.05).Conclusion:Extended nursing plays a positive role in the nursing of Alzheimer’s patients,including improving their cognitive function and restoring their self-care ability,so as to significantly improve their quality of life and reduce the occurrence of unsafe behaviors.It can be seen that the extended nursing intervention mode can be vigorously promoted in clinical practice.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
This study investigates the stabilization challenge at the boundaries of a type II thermoelastic network with n-star configuration and terminal masses,which experiences non-uniform bounded external disturbances at its...This study investigates the stabilization challenge at the boundaries of a type II thermoelastic network with n-star configuration and terminal masses,which experiences non-uniform bounded external disturbances at its control boundary.This research employs an advanced active disturbance rejection control framework,incorporating an innovative observer with adaptive gain characteristics for precise disturbance estimation,coupled with a robust feedback control mechanism for disturbance compensation.The theoretical analysis establishes rigorous convergence proofs for the proposed time-dependent extended state observer.Furthermore,this investigation utilizes semigroup theory to validate the closed-loop system’s well-posed.Through comprehensive Lyapunov-based analysis,this study confirms the system’s capability to achieve exponential convergence of tracking errors while effectively mitigating disturbance effects.Extensive numerical experiments corroborate the theoretical findings,demonstrating the control scheme’s practical efficacy.展开更多
Active Disturbance Rejection Control(ADRC)possesses robust disturbance rejection capabilities,making it well-suited for longitudinal velocity control.However,the conventional Extended State Observer(ESO)in ADRC fails ...Active Disturbance Rejection Control(ADRC)possesses robust disturbance rejection capabilities,making it well-suited for longitudinal velocity control.However,the conventional Extended State Observer(ESO)in ADRC fails to fully exploit feedback from first-order and higher-order estimation errors and tracking error simultaneously,thereby diminishing the control performance of ADRC.To address this limitation,an enhanced car-following algorithm utilising ADRC is proposed,which integrates the improved ESO with a feedback controller.In comparison to the conventional ESO,the enhanced version effectively utilises multi-order estimation and tracking errors.Specifically,it enhances convergence rates by incorporating feedback from higher-order estimation errors and ensures the estimated value converges to the reference value by utilising tracking error feedback.The improved ESO significantly enhances the disturbance rejection performance of ADRC.Finally,the effectiveness of the proposed algorithm is validated through the Lyapunov approach and experiments.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating "total disturbance" from observable me...The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating "total disturbance" from observable measured output. In this paper, we construct a nonlinear ESO for a class of uncertain lower triangular nonlinear systems with stochastic disturbance and show its convergence, where the total disturbance includes internal uncertain nonlinear part and external stochastic disturbance. The numerical experiments are carried out to illustrate effectiveness of the proposed approach.展开更多
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dyn...This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.展开更多
The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper es...The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper establishes the sufficient conditions for absolute stability of the ESO. Based on this study, a methodology to estimate several nonlinear functions in dy- namics systems is proposed.展开更多
Tacrolimus(Prograf?, Astellas Pharma Europe Ltd, Staines, United Kingdom; referred to as tacrolimusBID) is an immunosuppressive agent to prevent and treat allograft rejection in kidney transplant recipients in combina...Tacrolimus(Prograf?, Astellas Pharma Europe Ltd, Staines, United Kingdom; referred to as tacrolimusBID) is an immunosuppressive agent to prevent and treat allograft rejection in kidney transplant recipients in combination with mycophenolate mofetil, corticosteroids,with or without basiliximab induction. The drug has also been studied in liver, heart and lung transplant; however, these are currently off-label indications. An extended release tacrolimus formulation(Advagraf?, Astagraf XL?) allows for once-daily dosing, with the potential to improve adherence. Extended release tacrolimus has similar absorption, distribution, metabolism and excretion to tacrolimus-BID. Phase Ⅰ pharmacokinetic trials comparing extended release tacrolimus and tacrolimus-BID have demonstrated a decreased maximum concentration(C max) and delayed time to maximum concentration(t max) with the extended release formulation; however, AUC0-24 was comparable between formulations. Overall extended release tacrolimus has a very similar safety and efficacy profile to tacrolimus-BID. It is not recommended in the use of liver transplant patient's due to the increased risk of mortality in female recipients. There has been minimal data regarding the use of extended release tacrolimus in heart and lung transplant recipients. With the current data available for all organ groups the extended release tacrolimus should be dosed in a 1:1 fashion, the exception may be the cystic fibrosis population where their initial dose may need to be higher.展开更多
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sam...In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.展开更多
In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of activ...In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane,and compared with other relevant active disturbance rejection control(ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.展开更多
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ...This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
In this paper,a model predictive control(MPC)solution,assisted by extended state observer(ESO),is proposed for the common rail pressure control in gasoline engines.The rail pressure dynamic,nonlinear with large uncert...In this paper,a model predictive control(MPC)solution,assisted by extended state observer(ESO),is proposed for the common rail pressure control in gasoline engines.The rail pressure dynamic,nonlinear with large uncertainty,is modeled as a simple first order system.The discrepancy of the model from the real plant is lumped as"total disturbance",to be estimated in real-time by ESO and the n mitigated in the nonlin ear MPC,assuming the total disturbance does not change in the prediction horiz on.The non linear MPC problem is solved using the Newton/generalized minimum residual(GMRES)algorithm.The proposed ESO-MPC solution,is compared with the conventional proportional-integral-differential(PID)controller,based on the high-fidelity model provided in the benchmark problem in IFAC-E-CoSM.Results show the following benefits from using ESO-MPC relative to PID(benchmark):1)the disturbance rejection capability to fuel inject pulse step is improved by 12%in terms of recovery time;2)the transient response of rail pressure is improved by 5%in terms of the integrated absolute tracking error;and 3)the robustness is improved without n eed for gain scheduling,which is required in PID.Additionally,in creasing the ban dwidth of ESO allows reducing the complexity of the model implemented in MPC,while maintaining the disturbance rejection performance at the cost of high noise-sensitivity.Therefore,the ESO-MPC combination offers a simpler and more practical solution for common rail pressure control,relative to the standard MPC,which is consistent with the findings in simulation.展开更多
The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a con...The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a control method, which should have a good ability on disturbance rejection and a good adaptability on system parameter variation. The traditional proportional-integral(PI) controller has the advantage of simple and easy adjustment, but it cannot deal with the disturbances well in different situations. This paper proposes a simplified active disturbance rejection control law, whose debugging is as simple as the PI controller, and with better disturbance rejection ability and parameter adaptability. It adopts a simplified second-order extended state observer(ESO) with an adjustable parameter to accommodate the significant variation of the inertia during the different design stages of the telescope. The gain parameter of the ESO can be adjusted online with a recursive least square estimating method once the system parameter has changed significantly. Thus, the ESO can estimate the total disturbances timely and the controller will compensate them accordingly. With the adjustable parameter of the ESO, the controller can always achieve better performance in different applications of the telescope. The simulation and experimental verification of the control law was conducted on a 1.2-meter ground based telescope. The results verify the necessity of adjusting the parameter of the ESO, and demonstrate better disturbance rejection ability in a large range of speed variations during the design stages of the telescope.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and exter...The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and external disturbances.Thanks to the use of an extended observer design,the proposed control law is robust against all the uncertainties that affect the high-frequency gain matrix,which is shown to capture a broad spectrum of modelling issues,some of which are often neglected by traditional approaches.The proposed controller then provides robustness against parametric uncertainties,as moment of inertia estimation,payload deformations,actuator faults and external disturbances,while maintaining its asymptotic properties.展开更多
For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to ...For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.展开更多
There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlik...There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft computing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital information for detecting faults with only partial information of the plant, which cannot be easily accomplished with any existing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dynamic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively detected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time input-output mapping.展开更多
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘Objective:To explore the application value of the extended nursing intervention mode in senile dementia patients.Methods:A total of 60 cases of Alzheimer’s disease patients were selected as the research subjects and divided using the random number table method into the control group and the observation group,each with 30 cases.The control group adopted conventional nursing,while the observation group adopted the extended nursing model of this study.The self-care ability,quality of life,cognitive function,and the frequency of unsafe behaviors were compared between the two groups.Results:After 6 months of intervention,the results showed that the scores of all dimensions in the relevant data tables such as the activity of daily living(ADL)scale,simple intelligence scale,and health survey scale in the observation group were higher than those in the control group,and the differences were statistically significant(P<0.05).The incidence of unsafe behaviors in the observation group was lower than that in the control group,and the difference was statistically significant(χ^(2)=5.963,P<0.05).Conclusion:Extended nursing plays a positive role in the nursing of Alzheimer’s patients,including improving their cognitive function and restoring their self-care ability,so as to significantly improve their quality of life and reduce the occurrence of unsafe behaviors.It can be seen that the extended nursing intervention mode can be vigorously promoted in clinical practice.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
文摘This study investigates the stabilization challenge at the boundaries of a type II thermoelastic network with n-star configuration and terminal masses,which experiences non-uniform bounded external disturbances at its control boundary.This research employs an advanced active disturbance rejection control framework,incorporating an innovative observer with adaptive gain characteristics for precise disturbance estimation,coupled with a robust feedback control mechanism for disturbance compensation.The theoretical analysis establishes rigorous convergence proofs for the proposed time-dependent extended state observer.Furthermore,this investigation utilizes semigroup theory to validate the closed-loop system’s well-posed.Through comprehensive Lyapunov-based analysis,this study confirms the system’s capability to achieve exponential convergence of tracking errors while effectively mitigating disturbance effects.Extensive numerical experiments corroborate the theoretical findings,demonstrating the control scheme’s practical efficacy.
基金State Key Laboratory of Intelligent Green Vehicle and Mobility,Grant/Award Number:KFY2417Science and Technology Innovation 2030-“New Generation Artificial Intelligence”Major Project,Grant/Award Number:2022ZD0116305+7 种基金State Key Laboratory of Intelligent Vehicle Safety Technology,Grant/Award Number:IVSTSKL-202402Anhui Province Natural Science Funds for Distinguished Young Scholar,Grant/Award Number:2308085J02National Natural Science Foundation of China,Grant/Award Numbers:U2013601,U20A20225Wuhu Major Scientific and Technological Achievements Engineering Project,Grant/Award Number:2021zc04CAAI-Huawei Mind Spore Open Fund,Grant/Award Number:CAAIXSJLJJ-2022-011ANatural Science Foundation of Hefei,China,Grant/Award Number:202321State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Grant/Award Number:32215010Wuhu Municipal Science and Technology Program,Grant/Award Number:2021hg17。
文摘Active Disturbance Rejection Control(ADRC)possesses robust disturbance rejection capabilities,making it well-suited for longitudinal velocity control.However,the conventional Extended State Observer(ESO)in ADRC fails to fully exploit feedback from first-order and higher-order estimation errors and tracking error simultaneously,thereby diminishing the control performance of ADRC.To address this limitation,an enhanced car-following algorithm utilising ADRC is proposed,which integrates the improved ESO with a feedback controller.In comparison to the conventional ESO,the enhanced version effectively utilises multi-order estimation and tracking errors.Specifically,it enhances convergence rates by incorporating feedback from higher-order estimation errors and ensures the estimated value converges to the reference value by utilising tracking error feedback.The improved ESO significantly enhances the disturbance rejection performance of ADRC.Finally,the effectiveness of the proposed algorithm is validated through the Lyapunov approach and experiments.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.
基金This work was supported by the National Natural Science Foundation of China (No. 61273129).
文摘The extended state observer (ESO) is the most important part of an emerging control technology known as active disturbance rejection control to this day, aiming at estimating "total disturbance" from observable measured output. In this paper, we construct a nonlinear ESO for a class of uncertain lower triangular nonlinear systems with stochastic disturbance and show its convergence, where the total disturbance includes internal uncertain nonlinear part and external stochastic disturbance. The numerical experiments are carried out to illustrate effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXLX11_0961)
文摘This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
基金supported by Programa de Jovenes Investigadores e Innovadores COLCIENCIAS (DFIA-0494)Universidad Nacional de Colombia Manizales (12475),Vicerrectoría de Investigación,DIMA.
文摘The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper establishes the sufficient conditions for absolute stability of the ESO. Based on this study, a methodology to estimate several nonlinear functions in dy- namics systems is proposed.
文摘Tacrolimus(Prograf?, Astellas Pharma Europe Ltd, Staines, United Kingdom; referred to as tacrolimusBID) is an immunosuppressive agent to prevent and treat allograft rejection in kidney transplant recipients in combination with mycophenolate mofetil, corticosteroids,with or without basiliximab induction. The drug has also been studied in liver, heart and lung transplant; however, these are currently off-label indications. An extended release tacrolimus formulation(Advagraf?, Astagraf XL?) allows for once-daily dosing, with the potential to improve adherence. Extended release tacrolimus has similar absorption, distribution, metabolism and excretion to tacrolimus-BID. Phase Ⅰ pharmacokinetic trials comparing extended release tacrolimus and tacrolimus-BID have demonstrated a decreased maximum concentration(C max) and delayed time to maximum concentration(t max) with the extended release formulation; however, AUC0-24 was comparable between formulations. Overall extended release tacrolimus has a very similar safety and efficacy profile to tacrolimus-BID. It is not recommended in the use of liver transplant patient's due to the increased risk of mortality in female recipients. There has been minimal data regarding the use of extended release tacrolimus in heart and lung transplant recipients. With the current data available for all organ groups the extended release tacrolimus should be dosed in a 1:1 fashion, the exception may be the cystic fibrosis population where their initial dose may need to be higher.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61327003, 61004004), the China Fundamental Research Funds for the Central Universities (Nos. 10062013YWF13-ZY-68, 10062014YWF-14-ZDHXY-018) and the Tsinghua University Initiative Scientific Research Program (No. 2010Z02270)
文摘In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate the performance of the proposed observer.
文摘In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane,and compared with other relevant active disturbance rejection control(ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.
文摘This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
文摘In this paper,a model predictive control(MPC)solution,assisted by extended state observer(ESO),is proposed for the common rail pressure control in gasoline engines.The rail pressure dynamic,nonlinear with large uncertainty,is modeled as a simple first order system.The discrepancy of the model from the real plant is lumped as"total disturbance",to be estimated in real-time by ESO and the n mitigated in the nonlin ear MPC,assuming the total disturbance does not change in the prediction horiz on.The non linear MPC problem is solved using the Newton/generalized minimum residual(GMRES)algorithm.The proposed ESO-MPC solution,is compared with the conventional proportional-integral-differential(PID)controller,based on the high-fidelity model provided in the benchmark problem in IFAC-E-CoSM.Results show the following benefits from using ESO-MPC relative to PID(benchmark):1)the disturbance rejection capability to fuel inject pulse step is improved by 12%in terms of recovery time;2)the transient response of rail pressure is improved by 5%in terms of the integrated absolute tracking error;and 3)the robustness is improved without n eed for gain scheduling,which is required in PID.Additionally,in creasing the ban dwidth of ESO allows reducing the complexity of the model implemented in MPC,while maintaining the disturbance rejection performance at the cost of high noise-sensitivity.Therefore,the ESO-MPC combination offers a simpler and more practical solution for common rail pressure control,relative to the standard MPC,which is consistent with the findings in simulation.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 12122304 and 11973041)in part by the Youth Innovation Promotion Association CAS (No. 2019218)。
文摘The high-precision requirements will always be constrained due to the complicated operating conditions of the ground-based telescope. Owing to various internal and external disturbances, it is necessary to study a control method, which should have a good ability on disturbance rejection and a good adaptability on system parameter variation. The traditional proportional-integral(PI) controller has the advantage of simple and easy adjustment, but it cannot deal with the disturbances well in different situations. This paper proposes a simplified active disturbance rejection control law, whose debugging is as simple as the PI controller, and with better disturbance rejection ability and parameter adaptability. It adopts a simplified second-order extended state observer(ESO) with an adjustable parameter to accommodate the significant variation of the inertia during the different design stages of the telescope. The gain parameter of the ESO can be adjusted online with a recursive least square estimating method once the system parameter has changed significantly. Thus, the ESO can estimate the total disturbances timely and the controller will compensate them accordingly. With the adjustable parameter of the ESO, the controller can always achieve better performance in different applications of the telescope. The simulation and experimental verification of the control law was conducted on a 1.2-meter ground based telescope. The results verify the necessity of adjusting the parameter of the ESO, and demonstrate better disturbance rejection ability in a large range of speed variations during the design stages of the telescope.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
文摘The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and external disturbances.Thanks to the use of an extended observer design,the proposed control law is robust against all the uncertainties that affect the high-frequency gain matrix,which is shown to capture a broad spectrum of modelling issues,some of which are often neglected by traditional approaches.The proposed controller then provides robustness against parametric uncertainties,as moment of inertia estimation,payload deformations,actuator faults and external disturbances,while maintaining its asymptotic properties.
文摘For improving the performance of differential geometric guidance command(DGGC), a new formation of this guidance law is proposed, which can guarantee the finite time convergence(FTC) of the line of sight(LOS) rate to zero or its neighborhood against maneuvering targets in three-dimensional(3D) space. The extended state observer(ESO) is employed to estimate the target acceleration, which makes the new DGGC more applicable to practical interception scenarios. Finally, the effectiveness of this newly proposed guidance command is demonstrated by the numerical simulation results.
文摘There have been many studies on observer-based fault detection and isolation (FDI), such as using unknown input observer and generalized observer. Most of them require a nominal mathematical model of the system. Unlike sensor faults, actuator faults and process faults greatly affect the system dynamics. This paper presents a new process fault diagnosis technique without exact knowledge of the plant model via Extended State Observer (ESO) and soft computing. The ESO’s augmented or extended state is used to compute the system dynamics in real time, thereby provides foundation for real-time process fault detection. Based on the input and output data, the ESO identifies the un-modeled or incorrectly modeled dynamics combined with unknown external disturbances in real time and provides vital information for detecting faults with only partial information of the plant, which cannot be easily accomplished with any existing methods. Another advantage of the ESO is its simplicity in tuning only a single parameter. Without the knowledge of the exact plant model, fuzzy inference was developed to isolate faults. A strongly coupled three-tank nonlinear dynamic system was chosen as a case study. In a typical dynamic system, a process fault such as pipe blockage is likely incipient, which requires degree of fault identification at all time. Neural networks were trained to identify faults and also instantly determine degree of fault. The simulation results indicate that the proposed FDI technique effectively detected and isolated faults and also accurately determine the degree of fault. Soft computing (i.e. fuzzy logic and neural networks) makes fault diagnosis intelligent and fast because it provides intuitive logic to the system and real-time input-output mapping.