Shock wave data for Jilin ordinary chondrite and Nandan iron meteorite are measured by electric-pin techniques on the dynamic high-pressure device equipped with a two-stage light gas gun, and then equation-of-states s...Shock wave data for Jilin ordinary chondrite and Nandan iron meteorite are measured by electric-pin techniques on the dynamic high-pressure device equipped with a two-stage light gas gun, and then equation-of-states supposedly fit for describing their P-V-E relations are chosen to evaluate the values of their parameters. Demonstrated from the comparison between P-V curves of equation-of-states and experimental data points, P-V relation of Jilin ordinary chondrite can be described by the universal equation-of-state, of which bulk modulus value of zero-pressure K0s = 48.10 GPa, its pressure derivative K'os = 4.13. That of Nandan iron meteorite can be described by the three-term form of equation-of-state, of which the values of two matter parameters Q = 41.23531 GPa, 5 = 12.271 79. The Hugoniot data and equation-of-states for Jilin ordinary chondrite and Nandan iron meteorite are first reported in this paper. The equation-of-state defined by Hugoniot data measurement provides strong empirical support for describing the compression of meteorites to high pressure.展开更多
A simplified version of generalized Chaplygin gas (GCG) as a dark energy model is studied. By using the latest 162 ESSENCE type Ia supernovae (She Ia) data, 30 high redshift She Ia data, the baryonic acoustic osci...A simplified version of generalized Chaplygin gas (GCG) as a dark energy model is studied. By using the latest 162 ESSENCE type Ia supernovae (She Ia) data, 30 high redshift She Ia data, the baryonic acoustic oscillation peak from SDSS and the CMB data from WMAP3, a strong constraint on this simplified GCG model is obtained. At the 95.4% confidence level we obtain 0.21 ≤ Ωm ≤ 0.31 and 0.994 〈 α 〈 1.0 with the best fit Ωm = 0.25 and a = 1. This best fit scenario corresponds to an accelerating universe with qo ≈-0.65 and z ≈ 0.81 (a redshiR of cosmic phase transition from deceleration to acceleration).展开更多
The double complex symmetric gravitational theory is extended to the parametric symmetric gravitational theory by introducing a parameter β. Hence parametric Friedmann-Robertson-Walker equations are obtained and some...The double complex symmetric gravitational theory is extended to the parametric symmetric gravitational theory by introducing a parameter β. Hence parametric Friedmann-Robertson-Walker equations are obtained and some characters of dark energy in corresponding spaces are discussed by taking different values of β. In our method some previous results can be included as the special case of our results. It is worth noting that some characters of dark energy can be more intuitively described in our model. By analysis, we can predict that the fate of universe would be a Big Rip in the future, and also find that the state parameters for the two different constraint conditions wФ are consistent with the present cosmological observations.展开更多
We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures.At low temperature(0.06(1)T_(F)),the atom cloud undergoes an an...We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures.At low temperature(0.06(1)T_(F)),the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms,which behaves like oscillation in the horizontal plane.By analyzing the expansion dynamics according to the superfluid hydrodynamic equation,the effective polytropic index y of Equation-of-State(EoS)of Fermionic superfluid is extracted.The y values show a non-monotonic behavior over the BEC-BCS crossover,and have a good agreement with the theoretical results in the unitarity and BEC side.The normalized quasi-frequencies of the oscillatory expansion are measured,which drop significantly from the BEC side to the BCS side and reach a minimum value of 1.73 around 1/k_(F)a=-0.25.Our work improves the understanding of the dynamic properties of strongly interacting Fermi gas.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘Shock wave data for Jilin ordinary chondrite and Nandan iron meteorite are measured by electric-pin techniques on the dynamic high-pressure device equipped with a two-stage light gas gun, and then equation-of-states supposedly fit for describing their P-V-E relations are chosen to evaluate the values of their parameters. Demonstrated from the comparison between P-V curves of equation-of-states and experimental data points, P-V relation of Jilin ordinary chondrite can be described by the universal equation-of-state, of which bulk modulus value of zero-pressure K0s = 48.10 GPa, its pressure derivative K'os = 4.13. That of Nandan iron meteorite can be described by the three-term form of equation-of-state, of which the values of two matter parameters Q = 41.23531 GPa, 5 = 12.271 79. The Hugoniot data and equation-of-states for Jilin ordinary chondrite and Nandan iron meteorite are first reported in this paper. The equation-of-state defined by Hugoniot data measurement provides strong empirical support for describing the compression of meteorites to high pressure.
文摘A simplified version of generalized Chaplygin gas (GCG) as a dark energy model is studied. By using the latest 162 ESSENCE type Ia supernovae (She Ia) data, 30 high redshift She Ia data, the baryonic acoustic oscillation peak from SDSS and the CMB data from WMAP3, a strong constraint on this simplified GCG model is obtained. At the 95.4% confidence level we obtain 0.21 ≤ Ωm ≤ 0.31 and 0.994 〈 α 〈 1.0 with the best fit Ωm = 0.25 and a = 1. This best fit scenario corresponds to an accelerating universe with qo ≈-0.65 and z ≈ 0.81 (a redshiR of cosmic phase transition from deceleration to acceleration).
基金Supported by the National Natural Science Foundation of China under Grant No 10475036, the Natural Science Foundation of Liaoning Province under Grant No 20032102, and the Scientific Research Foundation of the Higher Education Institute of Liaoning Province under Grant No 05L215.
文摘The double complex symmetric gravitational theory is extended to the parametric symmetric gravitational theory by introducing a parameter β. Hence parametric Friedmann-Robertson-Walker equations are obtained and some characters of dark energy in corresponding spaces are discussed by taking different values of β. In our method some previous results can be included as the special case of our results. It is worth noting that some characters of dark energy can be more intuitively described in our model. By analysis, we can predict that the fate of universe would be a Big Rip in the future, and also find that the state parameters for the two different constraint conditions wФ are consistent with the present cosmological observations.
基金supported by the National Natural Science Foundation of China (11874340)the National Key R&D Program of China (2018YFA0306501)+2 种基金the CASthe Anhui Initiative in Quantum Information Technologiesthe Fundamental Research Funds for the Central Universities (WK2340000081)
文摘We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures.At low temperature(0.06(1)T_(F)),the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms,which behaves like oscillation in the horizontal plane.By analyzing the expansion dynamics according to the superfluid hydrodynamic equation,the effective polytropic index y of Equation-of-State(EoS)of Fermionic superfluid is extracted.The y values show a non-monotonic behavior over the BEC-BCS crossover,and have a good agreement with the theoretical results in the unitarity and BEC side.The normalized quasi-frequencies of the oscillatory expansion are measured,which drop significantly from the BEC side to the BCS side and reach a minimum value of 1.73 around 1/k_(F)a=-0.25.Our work improves the understanding of the dynamic properties of strongly interacting Fermi gas.