在线维修是节约核电厂大修工期和提升经济性的重要手段。然而目前EPR核电厂运行技术规范(Operating Technical Specifications,OTS)对乏燃料水池冷却和处理系统(Fuel pool cooling and purification system,PTR)的管理要求限制了PTR及...在线维修是节约核电厂大修工期和提升经济性的重要手段。然而目前EPR核电厂运行技术规范(Operating Technical Specifications,OTS)对乏燃料水池冷却和处理系统(Fuel pool cooling and purification system,PTR)的管理要求限制了PTR及其相关系统在线维修的效率和灵活性。OTS对PTR系统的管理要求来自乏燃料水池(Spent Fuel Pool,SFP)相关设计基准事故(Design Basis Condition,DBC),这些事故采用基于“乏燃料水池温度”的验收准则,事故后需要PTR系统尽快投入运行防止SFP沸腾。为了提高PTR系统在线维修灵活性,本文根据乏燃料水池事故特点,结合国内法规和同类型核电厂的良好实践,将SFP相关DBC事故的验收准则修改为基于“乏燃料组件淹没”的验收准则并重新开展事故分析。根据新的事故分析结果,优化反应堆功率运行期间PTR系统的最低可用列数要求,为PTR系统在线维修的优化提供依据。展开更多
We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system...We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system comprises an optical cavity, a two-level atomic ensemble and a mechanical resonator that possesses Duffing nonlinearity. The interaction between these components is mediated by the cavity mode, which is driven by an external laser. Our findings indicate that optimizing the coupling strengths between photons and phonons, as well as between atoms and the cavity,leads to maximal entanglement and EPR steering. The amplitude of the driving laser plays a pivotal role in enhancing the coupling between photons and phonons, and the system maintains robust entanglement and EPR steering even under high dissipation, thereby mitigating the constraints on initial conditions and parameter precision. Remarkably, the Duffing nonlinearity enhances the system's resistance to thermal noise, ensuring its stability and entanglement protection. Our analysis of EPR steering conditions reveals that the party with lower dissipation exhibits superior stability and a propensity to steer the party with higher dissipation. These discoveries offer novel perspectives for advancing quantum information processing and communication technologies.展开更多
The reduction of CO_(2)toward CO and CH_(4)over Ni-loaded MoS_(2)-like layered nanomaterials is investigated.The mild hydrothermal synthesis induced the formation of a molybdenum oxysulfide(MoO_(x)S_(y))phase,enriched...The reduction of CO_(2)toward CO and CH_(4)over Ni-loaded MoS_(2)-like layered nanomaterials is investigated.The mild hydrothermal synthesis induced the formation of a molybdenum oxysulfide(MoO_(x)S_(y))phase,enriched with sulfur defects and multiple Mo oxidation states that favor the insertion of Ni^(2+)cations via photo-assisted precipitation.The photocatalytic tests under LED irradiation at different wavelengths from 365 to 940 nm at 250℃rendered 1%CO_(2)conversion and continuous CO production up to 0.6 mmol/(gcat h).The incorporation of Ni into the MoO_(x)S_(y)structure boosted the continuous production of CO up to 5.1 mmol/(gcat h)with a CO_(2)conversion of 3.5%.In situ spectroscopic techniques and DFT simulations showed the O-incorporated MoS_(2)structure,in addition to Ni clusters as a supported metal catalyst.The mechanistic study of the CO_(2)reduction reaction over the catalysts revealed that the reverse water-gas shift reaction is favored due to the preferential formation of carboxylic species.展开更多
The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational re...The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational restraints on the proteins or their complexes.The rigid connection of the nitroxide spin label to the protein improves the accuracy and precision of distance measurement.We report a new spin labelling approach by formation of thioester bond between nitroxide(NO)spin label,NOAI(NO spin labels activated by acetylimidazole),and a protein thiol,and this spin labeling method has demonstrated high performance in DEER distance measurement on proteins.The results showed that NOAI has shorter connection to the protein ligation site than 2,2,5,5-tetramethyl-pyrroline-1-oxyl methanethiosulfonate(MTSL)and 3-maleimido-proxyl(M-Prox)in the respective protein conjugate and produces narrower distance distributions for the tested proteins including ubiquitin(Ub),immunoglobulin-binding b1 domain of streptococcal protein G(GB1),and second mitochondria-derived activator of caspases(Smac).The NOAI protein conjugate connected by a thioester bond is resistant to reducing reagent and offers highfidelity DEER distance measurements in cell lysates.展开更多
We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an a...We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives.展开更多
The endocrine-disrupting chemicals(EDCs)and antibiotics are causing negative effects on human beings and animals by disrupting the endocrine system and spreading antimicrobial resistance.The current need is to eradica...The endocrine-disrupting chemicals(EDCs)and antibiotics are causing negative effects on human beings and animals by disrupting the endocrine system and spreading antimicrobial resistance.The current need is to eradicate pharmaceutical waste from water bodies using advanced catalytic systems with high efficiency.Novel ternary carbon quantum dots(CQDs)decorated Z-Scheme WS_(2)-PANI nanocomposite was prepared by a green synthesis assisted in-situ polymerization for the photodegradation and detection of Estradiol(EST)and Nitrofurantoin(NFT).HRTEM micrographs revealed the formation of CQDs with a mean size of 4nm anchored on the surface of WS_(2)/PANI(width:PANI~20-30nm).The ternary nanocomposite showed excellent photocatalytic activity,degraded NFT(95.7%in 60min),and EST(96.6%in 60min).The rate kinetics study confirms the reaction followed pseudo first-order model.This heterostructure exhibited enhanced performances by modulating the energy level configuration,enhancing the absorption of visible light(2.4eV),and significantly improving the charge separation,three times higher than pristine WS_(2).These are highly favorable for increasing the generation of photoinduced charges and enhancing the overall performance of the catalyst.Further,the electrochemical sensor was prepared using CQDs@WS_(2)/PANI nanocomposite on a paper-based electrode.The CQDs@WS_(2)/PANI exhibit a linear response of 0.1-100nM,with a limit of detection of 13nM.This synergistic interfacial interaction resulted in the significantly improved electrochemical performance of the modified electrode.The proposed Z-scheme was justified by electron paramagnetic resonance(EPR)and scavenger experiment.An intermediate degradation pathway was also proposed.The synthesized materials were characterized using FESEM,HRTEM,XRD,FTIR,XPS,UV-visible spectroscopy,PL,and TRPL.Therefore,this study provides a direct approach to fabricate a heterojunction that combines two-dimensional,one dimensional,and zero-dimensional properties,enabling control over the energy level configuration and subsequent improvements in photocatalytic and electrocatalytic efficiency.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12204440)Fundamental Research Program of Shanxi Province (Grant Nos. 20210302123063 and 202103021223184)。
文摘We introduce a novel scheme for achieving quantum entanglement and Einstein–Podolsky–Rosen(EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom–optomechanical system. The system comprises an optical cavity, a two-level atomic ensemble and a mechanical resonator that possesses Duffing nonlinearity. The interaction between these components is mediated by the cavity mode, which is driven by an external laser. Our findings indicate that optimizing the coupling strengths between photons and phonons, as well as between atoms and the cavity,leads to maximal entanglement and EPR steering. The amplitude of the driving laser plays a pivotal role in enhancing the coupling between photons and phonons, and the system maintains robust entanglement and EPR steering even under high dissipation, thereby mitigating the constraints on initial conditions and parameter precision. Remarkably, the Duffing nonlinearity enhances the system's resistance to thermal noise, ensuring its stability and entanglement protection. Our analysis of EPR steering conditions reveals that the party with lower dissipation exhibits superior stability and a propensity to steer the party with higher dissipation. These discoveries offer novel perspectives for advancing quantum information processing and communication technologies.
基金Financial support from the Spanish Ministry of Science and Universities through CEX2023-001286-S,PID2020-114926RB-I00,and CTQ2016-77144-Rthe MICINN Scholarship.
文摘The reduction of CO_(2)toward CO and CH_(4)over Ni-loaded MoS_(2)-like layered nanomaterials is investigated.The mild hydrothermal synthesis induced the formation of a molybdenum oxysulfide(MoO_(x)S_(y))phase,enriched with sulfur defects and multiple Mo oxidation states that favor the insertion of Ni^(2+)cations via photo-assisted precipitation.The photocatalytic tests under LED irradiation at different wavelengths from 365 to 940 nm at 250℃rendered 1%CO_(2)conversion and continuous CO production up to 0.6 mmol/(gcat h).The incorporation of Ni into the MoO_(x)S_(y)structure boosted the continuous production of CO up to 5.1 mmol/(gcat h)with a CO_(2)conversion of 3.5%.In situ spectroscopic techniques and DFT simulations showed the O-incorporated MoS_(2)structure,in addition to Ni clusters as a supported metal catalyst.The mechanistic study of the CO_(2)reduction reaction over the catalysts revealed that the reverse water-gas shift reaction is favored due to the preferential formation of carboxylic species.
基金supported by National Natural Science Foundation of China(22161142018,21991081,22177056,and 22174074)the Ministry of Science and Technology of China(2021YFA1600304).
文摘The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational restraints on the proteins or their complexes.The rigid connection of the nitroxide spin label to the protein improves the accuracy and precision of distance measurement.We report a new spin labelling approach by formation of thioester bond between nitroxide(NO)spin label,NOAI(NO spin labels activated by acetylimidazole),and a protein thiol,and this spin labeling method has demonstrated high performance in DEER distance measurement on proteins.The results showed that NOAI has shorter connection to the protein ligation site than 2,2,5,5-tetramethyl-pyrroline-1-oxyl methanethiosulfonate(MTSL)and 3-maleimido-proxyl(M-Prox)in the respective protein conjugate and produces narrower distance distributions for the tested proteins including ubiquitin(Ub),immunoglobulin-binding b1 domain of streptococcal protein G(GB1),and second mitochondria-derived activator of caspases(Smac).The NOAI protein conjugate connected by a thioester bond is resistant to reducing reagent and offers highfidelity DEER distance measurements in cell lysates.
基金Project supported by the Education Department of Jilin Province,China(Grant No.JJKH20231291KJ)。
文摘We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives.
基金supported by (Dr. Manika Khanuja, Nanomission, (DST)[DST/NM/NB/2018/203(G) (JMI)]UGC grant (No.F.4(201-FRP)/2015 (BSR))
文摘The endocrine-disrupting chemicals(EDCs)and antibiotics are causing negative effects on human beings and animals by disrupting the endocrine system and spreading antimicrobial resistance.The current need is to eradicate pharmaceutical waste from water bodies using advanced catalytic systems with high efficiency.Novel ternary carbon quantum dots(CQDs)decorated Z-Scheme WS_(2)-PANI nanocomposite was prepared by a green synthesis assisted in-situ polymerization for the photodegradation and detection of Estradiol(EST)and Nitrofurantoin(NFT).HRTEM micrographs revealed the formation of CQDs with a mean size of 4nm anchored on the surface of WS_(2)/PANI(width:PANI~20-30nm).The ternary nanocomposite showed excellent photocatalytic activity,degraded NFT(95.7%in 60min),and EST(96.6%in 60min).The rate kinetics study confirms the reaction followed pseudo first-order model.This heterostructure exhibited enhanced performances by modulating the energy level configuration,enhancing the absorption of visible light(2.4eV),and significantly improving the charge separation,three times higher than pristine WS_(2).These are highly favorable for increasing the generation of photoinduced charges and enhancing the overall performance of the catalyst.Further,the electrochemical sensor was prepared using CQDs@WS_(2)/PANI nanocomposite on a paper-based electrode.The CQDs@WS_(2)/PANI exhibit a linear response of 0.1-100nM,with a limit of detection of 13nM.This synergistic interfacial interaction resulted in the significantly improved electrochemical performance of the modified electrode.The proposed Z-scheme was justified by electron paramagnetic resonance(EPR)and scavenger experiment.An intermediate degradation pathway was also proposed.The synthesized materials were characterized using FESEM,HRTEM,XRD,FTIR,XPS,UV-visible spectroscopy,PL,and TRPL.Therefore,this study provides a direct approach to fabricate a heterojunction that combines two-dimensional,one dimensional,and zero-dimensional properties,enabling control over the energy level configuration and subsequent improvements in photocatalytic and electrocatalytic efficiency.