This mini-review gives a brief account of the emergence of the electron paramagnetic resonance(EPR)spectroscopy in the second half of the 20th century and reports the continuous wave EPR spectroscopy studies on human ...This mini-review gives a brief account of the emergence of the electron paramagnetic resonance(EPR)spectroscopy in the second half of the 20th century and reports the continuous wave EPR spectroscopy studies on human and animal blood.The question posed by this review is whether the EPR spectroscopy in the form it appeared 70 years ago is still able to provide useful information about different pathological conditions in humans,particularly in the area of diagnosis.展开更多
Coffees and teas are beverages that are both exceptionally rich in antioxidant molecules, and are also both associated with beneficial health effects. Thus although the quality characteristics of these beverages are c...Coffees and teas are beverages that are both exceptionally rich in antioxidant molecules, and are also both associated with beneficial health effects. Thus although the quality characteristics of these beverages are conventionally assessed on the basis of their sensory properties, their antioxidant contents represent an additional and increasingly valued attribute of quality based on their contributions to healthy diets. Both beverages are prepared by hot water extraction of a pure plant-derived product, and thus their compositions can potentially change quite rapidly as a result of oxidation in contact with air. Oxidative processes often proceed via free radical intermediates, and sometimes also result in the formation of stable radical end-products;thus EPR spectroscopy is a convenient technique for investigating some of the various free radical reactions that occur in these beverages. This paper reviews progress that has been made in elucidating free radical processes that occur during the preparation and storage of coffees and teas, and the results are discussed in terms of quality criteria of the beverages.展开更多
Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), wh...Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U- and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i. e. , sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800℃ and, therefore, are useful for evaluating metasedimentary rocks (e. g. , Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium-bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.展开更多
The rational design of emulsions requires study of the main factors that influence their formation, physicochemical properties and, consequently, stability and performance. The use of vegetable oils in the pharmaceuti...The rational design of emulsions requires study of the main factors that influence their formation, physicochemical properties and, consequently, stability and performance. The use of vegetable oils in the pharmaceutical and cosmetic industries has recently become attractive. Dipteryx alata Vogel(D. alata) is an oleaginous species native to Brazil. The seeds of this species contain highly unsaturated oil with significant amounts of tocopherols and phytosterols, representing an important source of agents capable of combatting oxidative processes. In this work, a lamellar gel phase emulsion using oil extracted from the seeds of D. alata(baru) was developed. The steps involved in the development of this research were as follows: 1) development of formulations and 2) in vitro assays by simulating the evaporation of the final product after application to the skin and Electron paramagnetic resonance spectroscopy(EPR) of fatty acid spin labels was used to investigate the profile of interaction of the dispersed systems with stratum corneum(SC) lipids. The results indicate that the developed system shows no signs of instability during the storage period. Moreover, EPR studies indicated that D. alata oil and especially the developed formulation were able to increase SC lipid fluidity and extract a fatty-acid spin label from the lipid domain structures of SC, demonstrating its potential to act as a drug or skin care vehicle.展开更多
The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on ...The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance.展开更多
With rational designability,versatile tunability,and quantum coherence,molecular electron spin qubits could offer new opportunities for quantum information science,enabling simplified implementation of quantum algorit...With rational designability,versatile tunability,and quantum coherence,molecular electron spin qubits could offer new opportunities for quantum information science,enabling simplified implementation of quantum algorithms and chemical-specific quantum sensing.The development of these transformative technologies relies on coherent addressing of single molecular electron spin qubits with high initialization,manipulation,and readout fidelities.This is unfeasible to conventional electron spin resonance spectroscopy,which is widely used for coherent addressing of ensemble electron spins,due to its low initialization efficiency and readout sensitivity.Taking advantage of single spin detectability of single-molecule spectroscopy,scanning tunneling microscopy,atomic force microscopy,and quantum metrology,several strategies have been developed to empower electron spin resonance spectroscopy with single qubit addressability.In this Emerging Topic,we introduce principles and technical implementation of strategies for coherent addressing of single molecular electron spin qubits,discuss their potential applicability in quantum technologies,and point out their challenges in terms of scalability,molecular design,and/or decoherence suppression.We discuss future directions to overcome these challenges and to improve single qubit addressing technologies,which will facilitate the advancement of molecular quantum information science.展开更多
So far it is unclear whether the release of oxygen-evolving complex (OEC) subunits including PsbO, PsbP, and PsbQ proteins is affected by the phosphorylation of photosystem II (PSII) membranes under light stress. ...So far it is unclear whether the release of oxygen-evolving complex (OEC) subunits including PsbO, PsbP, and PsbQ proteins is affected by the phosphorylation of photosystem II (PSII) membranes under light stress. In this work, different phosphorylated PSII membranes were obtained from spinach. Phosphorylation partially suppressed the release of PsbO, PsbP, and PsbQ proteins from PSII membranes under light stress. Reactive oxygen species including superoxide anion, hydrogen peroxide and hydroxyl radical, were involved in the release of a small part of PsbO protein, but not in the release of PsbP and PsbQ proteins in the non-phosphorylated and phosphorylated PSII membranes. All of the results suggested that the release of PsbO, PsbP, and PsbQ proteins was partially regulated by phosphorylation in PSII membranes, and the role of reactive oxygen species in the release of OEC subunits in non-phosphorylated PSII membranes was the same as in phosphorylated PSII membranes.展开更多
文摘This mini-review gives a brief account of the emergence of the electron paramagnetic resonance(EPR)spectroscopy in the second half of the 20th century and reports the continuous wave EPR spectroscopy studies on human and animal blood.The question posed by this review is whether the EPR spectroscopy in the form it appeared 70 years ago is still able to provide useful information about different pathological conditions in humans,particularly in the area of diagnosis.
文摘Coffees and teas are beverages that are both exceptionally rich in antioxidant molecules, and are also both associated with beneficial health effects. Thus although the quality characteristics of these beverages are conventionally assessed on the basis of their sensory properties, their antioxidant contents represent an additional and increasingly valued attribute of quality based on their contributions to healthy diets. Both beverages are prepared by hot water extraction of a pure plant-derived product, and thus their compositions can potentially change quite rapidly as a result of oxidation in contact with air. Oxidative processes often proceed via free radical intermediates, and sometimes also result in the formation of stable radical end-products;thus EPR spectroscopy is a convenient technique for investigating some of the various free radical reactions that occur in these beverages. This paper reviews progress that has been made in elucidating free radical processes that occur during the preparation and storage of coffees and teas, and the results are discussed in terms of quality criteria of the beverages.
基金This paper is supported by the Natural Science and Engineering Re-search Council (NSERC) of Canada and the Cameco Corporation .
文摘Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U- and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i. e. , sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800℃ and, therefore, are useful for evaluating metasedimentary rocks (e. g. , Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium-bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.
基金supported by CAPES (Coordenacao de Aperfeicoamento de Pessoal de Ensino Superior) through a student fellowship to C.S.S. Moraes
文摘The rational design of emulsions requires study of the main factors that influence their formation, physicochemical properties and, consequently, stability and performance. The use of vegetable oils in the pharmaceutical and cosmetic industries has recently become attractive. Dipteryx alata Vogel(D. alata) is an oleaginous species native to Brazil. The seeds of this species contain highly unsaturated oil with significant amounts of tocopherols and phytosterols, representing an important source of agents capable of combatting oxidative processes. In this work, a lamellar gel phase emulsion using oil extracted from the seeds of D. alata(baru) was developed. The steps involved in the development of this research were as follows: 1) development of formulations and 2) in vitro assays by simulating the evaporation of the final product after application to the skin and Electron paramagnetic resonance spectroscopy(EPR) of fatty acid spin labels was used to investigate the profile of interaction of the dispersed systems with stratum corneum(SC) lipids. The results indicate that the developed system shows no signs of instability during the storage period. Moreover, EPR studies indicated that D. alata oil and especially the developed formulation were able to increase SC lipid fluidity and extract a fatty-acid spin label from the lipid domain structures of SC, demonstrating its potential to act as a drug or skin care vehicle.
基金Financial support from the National Key Research and Development Program(2016YFB0302403)is gratefully acknowledged.
文摘The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance.
基金supports from the National Natural Science Foundation of China(No.22273078)Hangzhou Municipal Funding,Team of Innovation(No.TD2022004).
文摘With rational designability,versatile tunability,and quantum coherence,molecular electron spin qubits could offer new opportunities for quantum information science,enabling simplified implementation of quantum algorithms and chemical-specific quantum sensing.The development of these transformative technologies relies on coherent addressing of single molecular electron spin qubits with high initialization,manipulation,and readout fidelities.This is unfeasible to conventional electron spin resonance spectroscopy,which is widely used for coherent addressing of ensemble electron spins,due to its low initialization efficiency and readout sensitivity.Taking advantage of single spin detectability of single-molecule spectroscopy,scanning tunneling microscopy,atomic force microscopy,and quantum metrology,several strategies have been developed to empower electron spin resonance spectroscopy with single qubit addressability.In this Emerging Topic,we introduce principles and technical implementation of strategies for coherent addressing of single molecular electron spin qubits,discuss their potential applicability in quantum technologies,and point out their challenges in terms of scalability,molecular design,and/or decoherence suppression.We discuss future directions to overcome these challenges and to improve single qubit addressing technologies,which will facilitate the advancement of molecular quantum information science.
基金Project supported by the National Natural Science Foundation of China (Nos. 20875093 and 90813021) and the Pilot Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No. KJCX2-SW-w29).
文摘So far it is unclear whether the release of oxygen-evolving complex (OEC) subunits including PsbO, PsbP, and PsbQ proteins is affected by the phosphorylation of photosystem II (PSII) membranes under light stress. In this work, different phosphorylated PSII membranes were obtained from spinach. Phosphorylation partially suppressed the release of PsbO, PsbP, and PsbQ proteins from PSII membranes under light stress. Reactive oxygen species including superoxide anion, hydrogen peroxide and hydroxyl radical, were involved in the release of a small part of PsbO protein, but not in the release of PsbP and PsbQ proteins in the non-phosphorylated and phosphorylated PSII membranes. All of the results suggested that the release of PsbO, PsbP, and PsbQ proteins was partially regulated by phosphorylation in PSII membranes, and the role of reactive oxygen species in the release of OEC subunits in non-phosphorylated PSII membranes was the same as in phosphorylated PSII membranes.