期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Orientation Parameters Estimation and Lens Distortion Correction for UAVs Photogrammetry with Non-metric Cameras
1
作者 DENG Xingsheng GAO Yang ZHU Xu 《Journal of Geodesy and Geoinformation Science》 2025年第1期71-88,共18页
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram... The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions. 展开更多
关键词 UAVs photogrammetry non-metric cameras Interior Orientation parameters(IOPs) Exterior Orientation parameters(eops) lens distortion correction
在线阅读 下载PDF
Prediction of length-of-day using extreme learning machine 被引量:6
2
作者 Lei Yu Zhao Danning Cai Hongbing 《Geodesy and Geodynamics》 2015年第2期151-159,共9页
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ... Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple. 展开更多
关键词 Length-of-day (LOD) PredictionExtreme learning machine (ELM) Artificial neural networks (ANN) Extreme learning machine (ELM) Earth orientation parameters eopeop prediction comparison campaign eop PCC)Least squares
原文传递
IGS polar motion measurement accuracy 被引量:2
3
作者 Jim Ray Paul Rebischung Jake Griffiths 《Geodesy and Geodynamics》 2017年第6期413-420,共8页
We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, alt... We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods. 展开更多
关键词 PM(Polar motion) GPS(Global Positioning System) eops(Earth orientation parameters) Accuracy IGS(International GNSS Service)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部