许多研究已表明合成孔径雷达(SAR)对水稻识别及作物长势监测很有潜力。但是,以往的研究多是采用单极化多时相SAR数据进行水稻监测的。该文本着探讨多极化方式的优势以及降低数据购买成本和减少数据处理量的目的,对单时相双极化的ENV ISA...许多研究已表明合成孔径雷达(SAR)对水稻识别及作物长势监测很有潜力。但是,以往的研究多是采用单极化多时相SAR数据进行水稻监测的。该文本着探讨多极化方式的优势以及降低数据购买成本和减少数据处理量的目的,对单时相双极化的ENV ISAT A SAR APP数据的水稻识别能力进行了评价。在水稻生长季节,获取了覆盖江苏洪泽县的A SAR APP时间序列数据。首先,分析比较不同地物的后向散射系数,选择出最能区分水稻与非水稻的单时相数据;然后,采用决策阈值法将水稻信息从图像中提取出来;最后,利用DGPS实测的样地数据对水稻识别进行精度验证。结果表明,利用水稻齐穗期至近成熟期的HH和VV极化的ENV ISAT A SAR APP图像能较好区分水稻与非水稻,水稻识别精度可达86%以上。展开更多
欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法。该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和。实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正...欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法。该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和。实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正是该混合项导致ENVI-SAT ASAR level 2算法有固有误差。利用遥感仿真的方法分析了不同海况条件下该算法的这一固有误差,结果表明,只有在有效波高较小、或风浪的成分较少、或双峰海浪的传播方向较靠近SAR距离向、或波长较长时固有误差才较小,ENVISAT ASAR level 2算法对海浪谱的反演才较为适用。展开更多
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) d...The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.展开更多
文摘许多研究已表明合成孔径雷达(SAR)对水稻识别及作物长势监测很有潜力。但是,以往的研究多是采用单极化多时相SAR数据进行水稻监测的。该文本着探讨多极化方式的优势以及降低数据购买成本和减少数据处理量的目的,对单时相双极化的ENV ISAT A SAR APP数据的水稻识别能力进行了评价。在水稻生长季节,获取了覆盖江苏洪泽县的A SAR APP时间序列数据。首先,分析比较不同地物的后向散射系数,选择出最能区分水稻与非水稻的单时相数据;然后,采用决策阈值法将水稻信息从图像中提取出来;最后,利用DGPS实测的样地数据对水稻识别进行精度验证。结果表明,利用水稻齐穗期至近成熟期的HH和VV极化的ENV ISAT A SAR APP图像能较好区分水稻与非水稻,水稻识别精度可达86%以上。
文摘欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法。该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和。实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正是该混合项导致ENVI-SAT ASAR level 2算法有固有误差。利用遥感仿真的方法分析了不同海况条件下该算法的这一固有误差,结果表明,只有在有效波高较小、或风浪的成分较少、或双峰海浪的传播方向较靠近SAR距离向、或波长较长时固有误差才较小,ENVISAT ASAR level 2算法对海浪谱的反演才较为适用。
基金Research Grant Council under contract No.461907Innovation and Technology Commission under contract No.GHP/026/06+1 种基金partly by China Postdoctoral Science Foundation under contract No.2008041345 for ChengONR under contract NosN00014-05-1-0328 and N00014-05-1-0606 for Zheng
文摘The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.