Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formati...Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formation process of different approaches,the characteristics of entry roof settlement evolution under different approaches are obtained.The N00 approach,which incorporates roof cutting and NPR cable support,optimizes the mining and entry formation process to reduce the settlement phase of entry roof,decreases the settlement of entry roof,and enhances the steadiness of entry roof.The N00 approach modifies the entry roof structure through roof cutting and establishes a hydraulic support load mechanics model for the mining panel to derive the theoretical load pressure formula for the N00 approach’s hydraulic support.Compared with the conventional 121 approach,the pressure on the N00 approach’s hydraulic support is reduced.Empirical data obtained through field monitoring demonstrate that the N00 approach has reduced the roof settlement of the entry and weakened the mining pressure manifestation at the mining panel,achieving the goal of protecting the entry and mining panel.展开更多
In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbul...In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries.展开更多
New solid backfill mining technology provides unique technical advantages for ‘‘three-under'' coal mining which refers to coal resources trapped under buildings, railways, and water bodies. This technology h...New solid backfill mining technology provides unique technical advantages for ‘‘three-under'' coal mining which refers to coal resources trapped under buildings, railways, and water bodies. This technology has a much higher recovery rate and can effectively control the surface subsidence. However, successful application of this technology depends heavily on geological conditions. To avoid the disadvantages associated with downward mining and overhead backfilling with this new technology, a new advanced solid backfill mining design with two pre-driving entries is proposed here to ensure the backfill effect. Taking Huayuan coal mine as an example, this paper tests the double gob-side entries retaining with no pillar left scheme and optimizes an integrated technology setup for backfill mining and gob-side entry retaining. Field applications show that the recovery rate increased from 40% for strip mining to 85% for backfill mining. Moreover, the new backfill technology allowed for better control over the surrounding rock deformation caused by the gob-side entry retaining effect and better control of ground subsidence as compared to strip mining.展开更多
This contribution describes development and application of a user-friendly finite element program,UT3PC, to address three important problems in underground coal mine design:(1) safety of main entries,(2) barrier pilla...This contribution describes development and application of a user-friendly finite element program,UT3PC, to address three important problems in underground coal mine design:(1) safety of main entries,(2) barrier pillar size needed for entry protection, and(3) safety of bleeder entries during the advance of an adjacent longwall panel.While the finite element method is by far the most popular engineering design tool of the digital age, widespread use by the mining community has been impeded by the relatively high cost of and the need for lengthy specialized training in numerical methods.Implementation of UT3PC overcomes these impediments in three easy steps.First, a material properties file is prepared for the considered site.Next, mesh generation is automatic through an interactive process.A third and last step is simply execution of the program.Examples using data from several western coal mines illustrate the ease of using the application for analysis of main entries, barrier pillars, and bleeder entry safety.展开更多
Based on a large amount of field investigation and observations, the paper analyzes and summarizes the mining depths and depth distribution of coal mines in China, discusses the characteristics of undrground pressure ...Based on a large amount of field investigation and observations, the paper analyzes and summarizes the mining depths and depth distribution of coal mines in China, discusses the characteristics of undrground pressure appearance in the entries of deep mining, points out some characteristics of surtounding rocks when rHo> =0.5, such as obvious rheologital deformation,and puts forward the main principles of supporting the entries in deep mining展开更多
Evaluation for blast resistances of rice entries of 20th to 23rd International Rice Blast Nursery (IRBN) was conducted at CNRRI during 1990-1993. The resistance to seedling blast (SB) was evaluated in a greenhouse at ...Evaluation for blast resistances of rice entries of 20th to 23rd International Rice Blast Nursery (IRBN) was conducted at CNRRI during 1990-1993. The resistance to seedling blast (SB) was evaluated in a greenhouse at 3-4 leaf stage with artificial inoculation while resistance to leaf blast (LB) and neck blast (NB) were evaluated in the natural field as instructed by the International Network of Genetic Evaluation for Rice (INGER). Materials with high level of blast resistance and good agronomic traits were selected and展开更多
Inspired by Phil Benson's study on the relations between ethnocentrism and the China-related entries in the OED2, this paper attempts to further examine how the image of China, a so--called "peripheral object of Wes...Inspired by Phil Benson's study on the relations between ethnocentrism and the China-related entries in the OED2, this paper attempts to further examine how the image of China, a so--called "peripheral object of Western knowledge," has been (ntis-) constructed in the dictionary, particularly its latest 2009 CD-ROM version, into which many laudable updates, including corrections and supplements, have been meticulously incorporated. It argues that ( 1 ) although British imperialism was a closed chapter, its vestiges can still be spotted in the dictionary text, not only in the quotations, which preserve historical information rather than reflect the editors' opinions, but also in the definitions and notes, which betray primarily the thoughts of these editors, ( 2 ) to an average user, the OED, with its legendary philological authority, is very likely to project " historical objectivity" into some problematic contents and thus misleads an innocent and uninformed mind, and (3) if ethnocentrism is an unavoidable component in the OED1 and OED2, then the editorial team of the OED3 in the making would do well to introduce into their work an element of" " entholocalism," by which is meant the ideological neutrality as well as the technical accuracy of encyclopedic information about such important peripheral objects as China, the most populous country and a fast growing economy, in the world in which the English language against the backdrop of globalization has firmly established itself as the international lingua fianca without rival. So long as it is intended to remain a historical dictionary true to its name, the OED ought to push forward, in the form of new editions, with the times.展开更多
Let(g_(n))_(n≥1) be a sequence of independent and identically distributed positive random d×d matrices and consider the matrix product G_(n)=g_(n)…g_1.Under suitable conditions,we establish the Berry-Esseen bou...Let(g_(n))_(n≥1) be a sequence of independent and identically distributed positive random d×d matrices and consider the matrix product G_(n)=g_(n)…g_1.Under suitable conditions,we establish the Berry-Esseen bounds on the rate of convergence in the central limit theorem and Cramer-type moderate deviation expansions,for any matrix norm ‖G_(n)‖ of G_(n),its entries G_(n)^(i,j) and its spectral radius ρ(G_(n)).Extended versions of their joint law with the direction of the random walk G_(n)x are also established,where x is a starting point in the unit sphere of R~d.展开更多
The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically...The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically studied.A variety of lining composite test methods were innovatively used to ensure the consistency of test conditions.The experimental results showed that the mullite(acidic oxide)has strong reactivity with rare earth inclusions,and the spinel(basic oxide)has stable chemical properties and weak reactivity with rare earth inclusions.Because alumina is one of the main reactants of clogging formation,corundum is not suitable for SEN lining.There are less clogs on the surface of zirconia,but it will be exsoluted and unstable.Therefore,solving the problem of zirconia exsolution will greatly strengthen its application in SEN lining.展开更多
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,...Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.展开更多
Dear Editor,Lassa virus(LASV)is the causative agent of the acute viral hemorrhagic Lassa fever(LF),which is classified into Mammarenavirus within the Arenaviridae family,with a single-stranded,negative-sense,bisegment...Dear Editor,Lassa virus(LASV)is the causative agent of the acute viral hemorrhagic Lassa fever(LF),which is classified into Mammarenavirus within the Arenaviridae family,with a single-stranded,negative-sense,bisegmented RNA genome.Due to its high pathogenicity and lethality,LASV is considered as a priority threat to public health,with an estimated cases of 300,000 infections and 5000 deaths annually.LASV was first isolated and described as a clinical entity in 1969 in Lassa,Nigeria(Garry,2023).LASV isolates of different geographic and host origins are highly diverse in genomic sequences and phylogenetically classified into up to seven lineages,with each lineage predominately localized in specific countries.Although the research on LF has been carried out for decades since the pathogen first characterized,there is no approved antiviral drugs or vaccines for clinical use against LASV to date(Grant et al.,2023).One possible reason that hindered the development of countermeasures is that the preclinical studies on authentic LASV are restricted in high bio-containment biosafety level 4(BSL-4)facilities.In this letter,we describe isolation,and characterization of the LASV from the clinical samples.And we applied a coadministration assay of antiviral drugs for LASV by using a clinically isolated Mammarenavirus lassaense strain in the BSL-4 facility,aiming to investigate new therapeutic strategies for LASV infection.展开更多
Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the na...Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the national oil company of Oman,Petroleum Development Oman(PDO).展开更多
The study aims to explore the damage characteristics and protection technologies of liquid-filled structures under high-speed projectile impact.A series of penetration impact experiments were conducted by focusing on ...The study aims to explore the damage characteristics and protection technologies of liquid-filled structures under high-speed projectile impact.A series of penetration impact experiments were conducted by focusing on different air layer configurations.By using high-speed camera and dynamic measurement systems,the effects of air layers on the projectile penetration,pressure wave propagation,cavitation evolution,and structural dynamic responses were analyzed.The results showed that the rarefaction wave reflected from the air-liquid interface significantly reduced the peak and specific impulse of the initial pressure wave,thereby diminishing the impact load on the structure.Additionally,the compressibility of air layers also attenuated the cavitation extrusion load.Both front and rear plates exhibited superimposed deformation modes,i.e.,local deformation or petal fracture with global deformation.Air layers effectively mitigated global deformation.However,when the air layer was positioned on the projectile's trajectory,it split the water-entry process and velocity attenuation of the projectile into two relatively independent phases.And the secondary water entry pressure wave caused more severe local deformation and petal fractures on the rear plate.展开更多
Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not ...Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs.展开更多
Stromal interaction molecules(STIM)s are Ca^(2+)sensors in internal Ca^(2+)stores of the endoplasmic reticulum.They activate the store-operated Ca^(2+)channels,which are the main source of Ca^(2+)entry in non-excitabl...Stromal interaction molecules(STIM)s are Ca^(2+)sensors in internal Ca^(2+)stores of the endoplasmic reticulum.They activate the store-operated Ca^(2+)channels,which are the main source of Ca^(2+)entry in non-excitable cells.Moreover,STIM proteins interact with other Ca^(2+)channel subunits and active transporters,making STIMs an important intermediate molecule in orchestrating a wide variety of Ca^(2+)influxes into excitable cells.Nevertheless,little is known about the role of STIM proteins in brain functioning.Being involved in many signaling pathways,STIMs replenish internal Ca^(2+)stores in neurons and mediate synaptic transmission and neuronal excitability.Ca^(2+)dyshomeostasis is a signature of many pathological conditions of the brain,including neurodegenerative diseases,injuries,stroke,and epilepsy.STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca^(2+)entry but also by regulating Ca^(2+)influx through other channels.Here,we review the present knowledge of STIMs in neurons and their involvement in brain pathology.展开更多
Thanks to their unique flavor and high quality,Indonesia’s Indomie instant noodles are popular throughout Southeast Asia.However,Mars Incorporated,the manufacturer of the product,has encountered its share of challeng...Thanks to their unique flavor and high quality,Indonesia’s Indomie instant noodles are popular throughout Southeast Asia.However,Mars Incorporated,the manufacturer of the product,has encountered its share of challenges while entering the highly competitive and complex Chinese market.The China-ASEAN Expo(CAEXPO)has become a key platform for Indomie to gain a foothold in the Chinese market.展开更多
Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determ...Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.展开更多
Car manufacturers aim to enhance the use of two-factor authentication (2FA) to protect keyless entry systems in contemporary cars. Despite providing significant ease for users, keyless entry systems have become more s...Car manufacturers aim to enhance the use of two-factor authentication (2FA) to protect keyless entry systems in contemporary cars. Despite providing significant ease for users, keyless entry systems have become more susceptible to appealing attacks like relay attacks and critical fob hacking. These weaknesses present considerable security threats, resulting in unauthorized entry and car theft. The suggested approach combines a conventional keyless entry feature with an extra security measure. Implementing multi-factor authentication significantly improves the security of systems that allow keyless entry by reducing the likelihood of unauthorized access. Research shows that the benefits of using two-factor authentication, such as a substantial increase in security, far outweigh any minor drawbacks.展开更多
基金Project(2022XDHZ12)supported by the Lvliang Technology Project,ChinaProjects(8232056,2232080)supported by the Beijing Natural Science Foundation,ChinaProject([2020]3008)supported by the Science and Technology Projects in Guizhou Province,China。
文摘Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formation process of different approaches,the characteristics of entry roof settlement evolution under different approaches are obtained.The N00 approach,which incorporates roof cutting and NPR cable support,optimizes the mining and entry formation process to reduce the settlement phase of entry roof,decreases the settlement of entry roof,and enhances the steadiness of entry roof.The N00 approach modifies the entry roof structure through roof cutting and establishes a hydraulic support load mechanics model for the mining panel to derive the theoretical load pressure formula for the N00 approach’s hydraulic support.Compared with the conventional 121 approach,the pressure on the N00 approach’s hydraulic support is reduced.Empirical data obtained through field monitoring demonstrate that the N00 approach has reduced the roof settlement of the entry and weakened the mining pressure manifestation at the mining panel,achieving the goal of protecting the entry and mining panel.
基金China Academy of Launch Vehicle Technology(Grant No.CALT-2022-03)Science and Technology on Underwater Information and Control Laboratory(Grant No.2021-JCJQ-LB-030-05).
文摘In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries.
基金supported by the Fundamental Research Funds program for the Central Universities (No. 2014RC02)the Research Innovation Program for College Graduates of Jiangsu Province (No. CXLX13_951)Qing Lan Project
文摘New solid backfill mining technology provides unique technical advantages for ‘‘three-under'' coal mining which refers to coal resources trapped under buildings, railways, and water bodies. This technology has a much higher recovery rate and can effectively control the surface subsidence. However, successful application of this technology depends heavily on geological conditions. To avoid the disadvantages associated with downward mining and overhead backfilling with this new technology, a new advanced solid backfill mining design with two pre-driving entries is proposed here to ensure the backfill effect. Taking Huayuan coal mine as an example, this paper tests the double gob-side entries retaining with no pillar left scheme and optimizes an integrated technology setup for backfill mining and gob-side entry retaining. Field applications show that the recovery rate increased from 40% for strip mining to 85% for backfill mining. Moreover, the new backfill technology allowed for better control over the surrounding rock deformation caused by the gob-side entry retaining effect and better control of ground subsidence as compared to strip mining.
文摘This contribution describes development and application of a user-friendly finite element program,UT3PC, to address three important problems in underground coal mine design:(1) safety of main entries,(2) barrier pillar size needed for entry protection, and(3) safety of bleeder entries during the advance of an adjacent longwall panel.While the finite element method is by far the most popular engineering design tool of the digital age, widespread use by the mining community has been impeded by the relatively high cost of and the need for lengthy specialized training in numerical methods.Implementation of UT3PC overcomes these impediments in three easy steps.First, a material properties file is prepared for the considered site.Next, mesh generation is automatic through an interactive process.A third and last step is simply execution of the program.Examples using data from several western coal mines illustrate the ease of using the application for analysis of main entries, barrier pillars, and bleeder entry safety.
文摘Based on a large amount of field investigation and observations, the paper analyzes and summarizes the mining depths and depth distribution of coal mines in China, discusses the characteristics of undrground pressure appearance in the entries of deep mining, points out some characteristics of surtounding rocks when rHo> =0.5, such as obvious rheologital deformation,and puts forward the main principles of supporting the entries in deep mining
文摘Evaluation for blast resistances of rice entries of 20th to 23rd International Rice Blast Nursery (IRBN) was conducted at CNRRI during 1990-1993. The resistance to seedling blast (SB) was evaluated in a greenhouse at 3-4 leaf stage with artificial inoculation while resistance to leaf blast (LB) and neck blast (NB) were evaluated in the natural field as instructed by the International Network of Genetic Evaluation for Rice (INGER). Materials with high level of blast resistance and good agronomic traits were selected and
文摘Inspired by Phil Benson's study on the relations between ethnocentrism and the China-related entries in the OED2, this paper attempts to further examine how the image of China, a so--called "peripheral object of Western knowledge," has been (ntis-) constructed in the dictionary, particularly its latest 2009 CD-ROM version, into which many laudable updates, including corrections and supplements, have been meticulously incorporated. It argues that ( 1 ) although British imperialism was a closed chapter, its vestiges can still be spotted in the dictionary text, not only in the quotations, which preserve historical information rather than reflect the editors' opinions, but also in the definitions and notes, which betray primarily the thoughts of these editors, ( 2 ) to an average user, the OED, with its legendary philological authority, is very likely to project " historical objectivity" into some problematic contents and thus misleads an innocent and uninformed mind, and (3) if ethnocentrism is an unavoidable component in the OED1 and OED2, then the editorial team of the OED3 in the making would do well to introduce into their work an element of" " entholocalism," by which is meant the ideological neutrality as well as the technical accuracy of encyclopedic information about such important peripheral objects as China, the most populous country and a fast growing economy, in the world in which the English language against the backdrop of globalization has firmly established itself as the international lingua fianca without rival. So long as it is intended to remain a historical dictionary true to its name, the OED ought to push forward, in the form of new editions, with the times.
基金supported by Deutsche Forschungsgemeinschaft (DFG) (Grant No. ME 4473/2-1)the Centre Henri Lebesgue (CHL) (Grant No. ANR-11-LABX-0020-01)National Natural Science Foundation of China (Grants Nos. 11971063, 11731012, 12271062 and 12288201)。
文摘Let(g_(n))_(n≥1) be a sequence of independent and identically distributed positive random d×d matrices and consider the matrix product G_(n)=g_(n)…g_1.Under suitable conditions,we establish the Berry-Esseen bounds on the rate of convergence in the central limit theorem and Cramer-type moderate deviation expansions,for any matrix norm ‖G_(n)‖ of G_(n),its entries G_(n)^(i,j) and its spectral radius ρ(G_(n)).Extended versions of their joint law with the direction of the random walk G_(n)x are also established,where x is a starting point in the unit sphere of R~d.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(52302031)National Natural Science Foundation of China(51932008 and 51772277)Central China Thousand Talents Project(204200510011).
文摘The reaction of carbon-free oxide-based(corundum,spinel,zirconia,and mullite)submerged entry nozzle(SEN)lining with rare earth inclusions and its anti-clogging effects under near working conditions were systematically studied.A variety of lining composite test methods were innovatively used to ensure the consistency of test conditions.The experimental results showed that the mullite(acidic oxide)has strong reactivity with rare earth inclusions,and the spinel(basic oxide)has stable chemical properties and weak reactivity with rare earth inclusions.Because alumina is one of the main reactants of clogging formation,corundum is not suitable for SEN lining.There are less clogs on the surface of zirconia,but it will be exsoluted and unstable.Therefore,solving the problem of zirconia exsolution will greatly strengthen its application in SEN lining.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01).
文摘Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.
基金supported by the National Key Research and Development Program of China(2022YFC2303300,2023YFC2605504)the National Natural Science Foundation of China(82172273 and 31670165)the Open Research Fund Program of the State Key Laboratory of Virology of China(2023JZZD-01).
文摘Dear Editor,Lassa virus(LASV)is the causative agent of the acute viral hemorrhagic Lassa fever(LF),which is classified into Mammarenavirus within the Arenaviridae family,with a single-stranded,negative-sense,bisegmented RNA genome.Due to its high pathogenicity and lethality,LASV is considered as a priority threat to public health,with an estimated cases of 300,000 infections and 5000 deaths annually.LASV was first isolated and described as a clinical entity in 1969 in Lassa,Nigeria(Garry,2023).LASV isolates of different geographic and host origins are highly diverse in genomic sequences and phylogenetically classified into up to seven lineages,with each lineage predominately localized in specific countries.Although the research on LF has been carried out for decades since the pathogen first characterized,there is no approved antiviral drugs or vaccines for clinical use against LASV to date(Grant et al.,2023).One possible reason that hindered the development of countermeasures is that the preclinical studies on authentic LASV are restricted in high bio-containment biosafety level 4(BSL-4)facilities.In this letter,we describe isolation,and characterization of the LASV from the clinical samples.And we applied a coadministration assay of antiviral drugs for LASV by using a clinically isolated Mammarenavirus lassaense strain in the BSL-4 facility,aiming to investigate new therapeutic strategies for LASV infection.
文摘Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the national oil company of Oman,Petroleum Development Oman(PDO).
基金the financial support provided by National Natural Science Foundation of China(Grant Nos.52271338,52371342 and 51979277).
文摘The study aims to explore the damage characteristics and protection technologies of liquid-filled structures under high-speed projectile impact.A series of penetration impact experiments were conducted by focusing on different air layer configurations.By using high-speed camera and dynamic measurement systems,the effects of air layers on the projectile penetration,pressure wave propagation,cavitation evolution,and structural dynamic responses were analyzed.The results showed that the rarefaction wave reflected from the air-liquid interface significantly reduced the peak and specific impulse of the initial pressure wave,thereby diminishing the impact load on the structure.Additionally,the compressibility of air layers also attenuated the cavitation extrusion load.Both front and rear plates exhibited superimposed deformation modes,i.e.,local deformation or petal fracture with global deformation.Air layers effectively mitigated global deformation.However,when the air layer was positioned on the projectile's trajectory,it split the water-entry process and velocity attenuation of the projectile into two relatively independent phases.And the secondary water entry pressure wave caused more severe local deformation and petal fractures on the rear plate.
基金supported by the National Natural Science Foundation of China(61962016)the Ministry of Science and Technology of China(G2022033002L)+1 种基金National Natural Science Foundation of Guangxi(2022JJA170057)Guangxi Education Department’s Project on Improving the Basic Research Ability of Young and Middleaged Teachers in Universities(2023ky0812,Research on Statistical Network Delay Predictions in Large-scale SDNs).
文摘Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs.
基金supported by grants from the Russian Science Foundation(23-44-00054)the National Natural Science Foundation of China(32261133525).
文摘Stromal interaction molecules(STIM)s are Ca^(2+)sensors in internal Ca^(2+)stores of the endoplasmic reticulum.They activate the store-operated Ca^(2+)channels,which are the main source of Ca^(2+)entry in non-excitable cells.Moreover,STIM proteins interact with other Ca^(2+)channel subunits and active transporters,making STIMs an important intermediate molecule in orchestrating a wide variety of Ca^(2+)influxes into excitable cells.Nevertheless,little is known about the role of STIM proteins in brain functioning.Being involved in many signaling pathways,STIMs replenish internal Ca^(2+)stores in neurons and mediate synaptic transmission and neuronal excitability.Ca^(2+)dyshomeostasis is a signature of many pathological conditions of the brain,including neurodegenerative diseases,injuries,stroke,and epilepsy.STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca^(2+)entry but also by regulating Ca^(2+)influx through other channels.Here,we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
文摘Thanks to their unique flavor and high quality,Indonesia’s Indomie instant noodles are popular throughout Southeast Asia.However,Mars Incorporated,the manufacturer of the product,has encountered its share of challenges while entering the highly competitive and complex Chinese market.The China-ASEAN Expo(CAEXPO)has become a key platform for Indomie to gain a foothold in the Chinese market.
基金supported by the National Natural Science Foundation of China(Grant Nos.52425211,52272360,and 52472394)Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0300)。
文摘Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.
文摘Car manufacturers aim to enhance the use of two-factor authentication (2FA) to protect keyless entry systems in contemporary cars. Despite providing significant ease for users, keyless entry systems have become more susceptible to appealing attacks like relay attacks and critical fob hacking. These weaknesses present considerable security threats, resulting in unauthorized entry and car theft. The suggested approach combines a conventional keyless entry feature with an extra security measure. Implementing multi-factor authentication significantly improves the security of systems that allow keyless entry by reducing the likelihood of unauthorized access. Research shows that the benefits of using two-factor authentication, such as a substantial increase in security, far outweigh any minor drawbacks.