In this study,based on MERRA-2 reanalysis data and a multi-algorithm integrated atmospheric river(AR)iden-tification method,the authors reveal the cross-seasonal regulation mechanism of El Niño-Southern Oscillati...In this study,based on MERRA-2 reanalysis data and a multi-algorithm integrated atmospheric river(AR)iden-tification method,the authors reveal the cross-seasonal regulation mechanism of El Niño-Southern Oscillation(ENSO)on winter-spring AR activities in East Asia.The results show that ENSO asymmetrically modulates AR ac-tivity through teleconnection and hysteresis effects,and has significant enhancement/inhibition effects on ARs in different regions.At the onset of El Niño,enhanced southwesterly flow at the western edge of the western Pacific subtropical high(WPSH)leads to enhanced AR activity in the western Pacific,and anomalous southerly winds in the Indian Ocean promote northward transport of water vapor in the Arabian Sea and Bay of Bengal.With a three-month lag,the weakening and eastward retreat of the WPSH weakens the low-latitude AR activity,but persistent southerly winds in the Bay of Bengal maintain the AR activity over Southwest China.The mid-to high-latitude AR response exhibits delayed dynamics,initially dominated by the synergistic effect of the southward deviation of the upper-air rapids and the low-level convergence(double-rapid-flow effect)and later modulated by the Pacific-North American teleconnection(PNA)-triggered East Asian ridge,which enhances the precipitation efficiency through prolonged frontal activity and enhanced cold-warm airmass convergence.Overall,El Niño promotes the development of low-and midlatitude AR activity in East Asia,while La Niña promotes(maritime continental)AR activity in the tropics.This study establishes the“ENSO teleconnection→circulation adjust-ment→East Asian AR response”chain,revealing a cross-seasonal lagged response mechanisms of East Asian AR activity,and provides a theoretical basis for winter and spring climate prediction and extreme precipitation forecasting.展开更多
Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN...Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.展开更多
The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO)....The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).However,there is no consensus yet on its anomalous impacts on the phase and amplitude of ENSO.Based on data during 1982-2022,results show that anomalies of the antisymmetric mode can affect the evolution of ENSO on the interannual scale via Bjerknes feedback,in which the positive(negative)phase of the antisymmetric mode can strengthen El Niño(La Niña)in boreal winter via an earlier(delayed)seasonal cycle transition and larger(smaller)annual mean.The magnitude of the SST anomalies in the equatorial eastern Pacific can reach more than±0.3◦C,regulated by the changes in the antisymmetric mode based on random sensitivity analysis.Results reveal the spatial pattern of the annual cycle associated with the seasonal phase-locking of ENSO evolution and provide new insight into the impact of the annual cycle of background SST on ENSO,which possibly carries important implications for forecasting ENSO.展开更多
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
The Mediterranean region in central Chile is experiencing a significant decrease in precipitation due to climate change and the dynamics of the El Nino Southern Oscillation(ENSO).Droughts have increased in recent deca...The Mediterranean region in central Chile is experiencing a significant decrease in precipitation due to climate change and the dynamics of the El Nino Southern Oscillation(ENSO).Droughts have increased in recent decades,~with the most severe and longest drought of the last millennium occurring since 2010 in central Chile.The impact of ongoing water scarcity is leading to significant drought-related declines in tree growth and forest dieback in the Mediterranean region.A deep understanding of how tree species respond to climate is crucial to accurately predict how forests will respond to climate change.We examined the growth responses to climate of three endemic and threatened tree species of the Mediterranean forests of central Chile,Nothofagus macrocarpa,Cryptocarya alba and Persea lingue,in a protected area.We observed that the growth of all three species was highly dependent on water availability and ENSO,and that the evergreen species C.alba and P.lingue increased their sensitivity to hydroclimate more than the deciduous species N.macrocarpa.These relationships were consistent across much of southern South America,highlighting the dependence of these species on water availability at large geographic scales.We found that there is a relationship between local water availability and ENSO that has intensified temporally and expanded geographically in recent decades.The xerophyllous species C.alba showed greater resistance and increasing resilience to severe droughts,while P.lingue and N.macrocarpa showed greater growth decline during droughts,possibly due to their preference for wetter environments.Our results highlight the crucial role of ENSO-driven water availability and drought in limiting tree growth and threatening the conservation of Mediterranean forests in central Chile.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41830964]the Natural Science Foundation of Hunan Province[grant number 2023JJ40666]。
文摘In this study,based on MERRA-2 reanalysis data and a multi-algorithm integrated atmospheric river(AR)iden-tification method,the authors reveal the cross-seasonal regulation mechanism of El Niño-Southern Oscillation(ENSO)on winter-spring AR activities in East Asia.The results show that ENSO asymmetrically modulates AR ac-tivity through teleconnection and hysteresis effects,and has significant enhancement/inhibition effects on ARs in different regions.At the onset of El Niño,enhanced southwesterly flow at the western edge of the western Pacific subtropical high(WPSH)leads to enhanced AR activity in the western Pacific,and anomalous southerly winds in the Indian Ocean promote northward transport of water vapor in the Arabian Sea and Bay of Bengal.With a three-month lag,the weakening and eastward retreat of the WPSH weakens the low-latitude AR activity,but persistent southerly winds in the Bay of Bengal maintain the AR activity over Southwest China.The mid-to high-latitude AR response exhibits delayed dynamics,initially dominated by the synergistic effect of the southward deviation of the upper-air rapids and the low-level convergence(double-rapid-flow effect)and later modulated by the Pacific-North American teleconnection(PNA)-triggered East Asian ridge,which enhances the precipitation efficiency through prolonged frontal activity and enhanced cold-warm airmass convergence.Overall,El Niño promotes the development of low-and midlatitude AR activity in East Asia,while La Niña promotes(maritime continental)AR activity in the tropics.This study establishes the“ENSO teleconnection→circulation adjust-ment→East Asian AR response”chain,revealing a cross-seasonal lagged response mechanisms of East Asian AR activity,and provides a theoretical basis for winter and spring climate prediction and extreme precipitation forecasting.
基金supported by the National Natural Science Foundation of China[grant numbers 41975087,U2242212,and 41975085]supported by the National Natural Science Foundation of China[grant number U2242212]。
文摘Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.
基金jointly supported by the National Natural Science Foundation of China [grant numbers U2242205 and 41830969]the S&T Development Fund of CAMS [grant number 2023KJ036]the Basic Scientific Research and Operation Foundation of CAMS [grant number 2023Z018]。
文摘The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).However,there is no consensus yet on its anomalous impacts on the phase and amplitude of ENSO.Based on data during 1982-2022,results show that anomalies of the antisymmetric mode can affect the evolution of ENSO on the interannual scale via Bjerknes feedback,in which the positive(negative)phase of the antisymmetric mode can strengthen El Niño(La Niña)in boreal winter via an earlier(delayed)seasonal cycle transition and larger(smaller)annual mean.The magnitude of the SST anomalies in the equatorial eastern Pacific can reach more than±0.3◦C,regulated by the changes in the antisymmetric mode based on random sensitivity analysis.Results reveal the spatial pattern of the annual cycle associated with the seasonal phase-locking of ENSO evolution and provide new insight into the impact of the annual cycle of background SST on ENSO,which possibly carries important implications for forecasting ENSO.
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
基金funded by Gobierno de Chile with the project“An atlas of droughts for Chile:1000 years of space-time changes and variations throughout the territory”(grant number FONDECYT 1181956).
文摘The Mediterranean region in central Chile is experiencing a significant decrease in precipitation due to climate change and the dynamics of the El Nino Southern Oscillation(ENSO).Droughts have increased in recent decades,~with the most severe and longest drought of the last millennium occurring since 2010 in central Chile.The impact of ongoing water scarcity is leading to significant drought-related declines in tree growth and forest dieback in the Mediterranean region.A deep understanding of how tree species respond to climate is crucial to accurately predict how forests will respond to climate change.We examined the growth responses to climate of three endemic and threatened tree species of the Mediterranean forests of central Chile,Nothofagus macrocarpa,Cryptocarya alba and Persea lingue,in a protected area.We observed that the growth of all three species was highly dependent on water availability and ENSO,and that the evergreen species C.alba and P.lingue increased their sensitivity to hydroclimate more than the deciduous species N.macrocarpa.These relationships were consistent across much of southern South America,highlighting the dependence of these species on water availability at large geographic scales.We found that there is a relationship between local water availability and ENSO that has intensified temporally and expanded geographically in recent decades.The xerophyllous species C.alba showed greater resistance and increasing resilience to severe droughts,while P.lingue and N.macrocarpa showed greater growth decline during droughts,possibly due to their preference for wetter environments.Our results highlight the crucial role of ENSO-driven water availability and drought in limiting tree growth and threatening the conservation of Mediterranean forests in central Chile.