Based on a linear model, the present study provides analytical solutions for ideal triple forcing sources similar to sea surface temperature anomaly (SSTA) pat- terns associated with El Nino-Southern Oscillation (E...Based on a linear model, the present study provides analytical solutions for ideal triple forcing sources similar to sea surface temperature anomaly (SSTA) pat- terns associated with El Nino-Southern Oscillation (ENSO) Modoki in winter. The ideal triple pattern is composed of an equatorially symmetric heat source in the middle and equatoriaUy asymmetric cold forcing in the southeast and northwest. The equatorially symmetric heat source excites low-level cyclonic circulation anomalies associated with Rossby waves in both hemispheres, while the northwest- ern and southeastern equatorially asymmetric cold sources induce low-level anomalous anticyclones associated with Rossby waves in the hemisphere where the forcing source is located. Low-level zonal winds converge toward the heat sources associated with Kelvin and Rossby waves. Due to unequal forcing intensity in the northwest and southeast, atmospheric responses around the equatorially symmetric forcing become asymmetric, and low-level cyclonic circulation anomalies in the Southern Hemisphere become greater than those in the Northern Hemisphere. Ascending (descending) flows coincide with heat (cold) sources, resulting in a double-cell structure over the regions of forcing sources. Ideal triple patterns similar to SSTA patterns associated with La Nina Modoki produce opposite atmospheric responses. The theoretical atmospheric responses are consistent with observed circulation anomalies associated with ENSO Modoki. Therefore, the theoretical solutions can explain the dynamics responsible for atmospheric circulation anomalies associated with ENSO Modoki events.展开更多
This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical c...This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.展开更多
Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identi...Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identified to be the factors that contribute to the interannual variability of landfalling TCs.El Ni o Modoki years are associated with a greater-than-average frequency of landfalling TCs in China,but reversed in canonical El Ni o years.Significant difference in genesis locations of landfalling TCs in China for the two kinds of El Ni o phases occurs dominantly in the northern tropical western North Pacific(WNP).The patterns of low-level circulation anomalies and outgoing longwave radiation(OLR) anomalies associated with landfalling TC genesis with different types of El Ni o phases are examined.During canonical El Ni o years,a broad zonal band of positive OLR anomalies dominates the tropical WNP,while the circulation anomalies exhibit a meridionally symmetrical dipole pattern with an anticyclonic anomaly in the subtropics and a cyclonic anomaly near the tropics.In El Ni o Modoki years,a vast region of negative OLR anomalies,roughly to the south of 25°N with a strong large-scale cyclonic anomaly over the tropical WNP,provides a more favorable condition for landfalling TC genesis compared to its counterpart during canonical El Ni o years.For more landfalling TCs formed in the northern tropical WNP in El Ni o Modoki years,there are more TCs making landfall on the northern coast of China in El Ni o Modoki years than in canonical El Ni o years.The number of landfalling TCs is slightly above normal in canonical La Ni a years.Enhanced convection is found in the South China Sea(SCS) and the west of the tropical WNP,which results in landfalling TCs forming more westward in canonical La Ni a years.During La Ni a Modoki years,the landfalling TC frequency are below normal,owing to an unfavorable condition for TC genesis persisting in a broad zonal band from 5°N to 25°N.Since the western North Pacific subtropical high(WNPSH) in La Ni a Modoki years is located in the westernmost region,TCs mainly make landfall on the south coast of China.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB950400)the National Natural Science Foundation of China (Grant No. 41030961)the State Oceanic Administration of the People’s Republic of China
文摘Based on a linear model, the present study provides analytical solutions for ideal triple forcing sources similar to sea surface temperature anomaly (SSTA) pat- terns associated with El Nino-Southern Oscillation (ENSO) Modoki in winter. The ideal triple pattern is composed of an equatorially symmetric heat source in the middle and equatoriaUy asymmetric cold forcing in the southeast and northwest. The equatorially symmetric heat source excites low-level cyclonic circulation anomalies associated with Rossby waves in both hemispheres, while the northwest- ern and southeastern equatorially asymmetric cold sources induce low-level anomalous anticyclones associated with Rossby waves in the hemisphere where the forcing source is located. Low-level zonal winds converge toward the heat sources associated with Kelvin and Rossby waves. Due to unequal forcing intensity in the northwest and southeast, atmospheric responses around the equatorially symmetric forcing become asymmetric, and low-level cyclonic circulation anomalies in the Southern Hemisphere become greater than those in the Northern Hemisphere. Ascending (descending) flows coincide with heat (cold) sources, resulting in a double-cell structure over the regions of forcing sources. Ideal triple patterns similar to SSTA patterns associated with La Nina Modoki produce opposite atmospheric responses. The theoretical atmospheric responses are consistent with observed circulation anomalies associated with ENSO Modoki. Therefore, the theoretical solutions can explain the dynamics responsible for atmospheric circulation anomalies associated with ENSO Modoki events.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences with Grant No.XDA11010000the National Natural Science Foundation of China (No.41205026)+6 种基金the National Basic Research Program of China (2011CB403500)the Innovation Group Program of State Key Laboratory of Tropical Oceanography (LTOZZ1201)Dr.Lei Wang was also sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of Chinathe specialized research fund for the doctoral program of Higher Education for Youthsthe foundation of Guangdong Educational Committee for Youths (2012 LYM_0008)the open fund of the Key Laboratory of Ocean Circulation and Waves of Chinese Academy of Sciences (KLOCAW1309)
文摘This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.
基金National Natural Science Foundation of China (41105036,41105035,40730948,40830958,40921160382)National Grand Fundamental Research "973" Program of China (2009CB421502)
文摘Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identified to be the factors that contribute to the interannual variability of landfalling TCs.El Ni o Modoki years are associated with a greater-than-average frequency of landfalling TCs in China,but reversed in canonical El Ni o years.Significant difference in genesis locations of landfalling TCs in China for the two kinds of El Ni o phases occurs dominantly in the northern tropical western North Pacific(WNP).The patterns of low-level circulation anomalies and outgoing longwave radiation(OLR) anomalies associated with landfalling TC genesis with different types of El Ni o phases are examined.During canonical El Ni o years,a broad zonal band of positive OLR anomalies dominates the tropical WNP,while the circulation anomalies exhibit a meridionally symmetrical dipole pattern with an anticyclonic anomaly in the subtropics and a cyclonic anomaly near the tropics.In El Ni o Modoki years,a vast region of negative OLR anomalies,roughly to the south of 25°N with a strong large-scale cyclonic anomaly over the tropical WNP,provides a more favorable condition for landfalling TC genesis compared to its counterpart during canonical El Ni o years.For more landfalling TCs formed in the northern tropical WNP in El Ni o Modoki years,there are more TCs making landfall on the northern coast of China in El Ni o Modoki years than in canonical El Ni o years.The number of landfalling TCs is slightly above normal in canonical La Ni a years.Enhanced convection is found in the South China Sea(SCS) and the west of the tropical WNP,which results in landfalling TCs forming more westward in canonical La Ni a years.During La Ni a Modoki years,the landfalling TC frequency are below normal,owing to an unfavorable condition for TC genesis persisting in a broad zonal band from 5°N to 25°N.Since the western North Pacific subtropical high(WNPSH) in La Ni a Modoki years is located in the westernmost region,TCs mainly make landfall on the south coast of China.