The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent s...Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent survival times, which is not valid for honey bees, which live in nests. The study introduces a semi-parametric marginal proportional hazards mixture cure (PHMC) model with exchangeable correlation structure, using generalized estimating equations for survival data analysis. The model was tested on clustered right-censored bees survival data with a cured fraction, where two bee species were subjected to different entomopathogens to test the effect of the entomopathogens on the survival of the bee species. The Expectation-Solution algorithm is used to estimate the parameters. The study notes a weak positive association between cure statuses (ρ1=0.0007) and survival times for uncured bees (ρ2=0.0890), emphasizing their importance. The odds of being uncured for A. mellifera is higher than the odds for species M. ferruginea. The bee species, A. mellifera are more susceptible to entomopathogens icipe 7, icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semiparametric PH model generally fits the data well as compared to model that assume independent correlation structure. Thus, the semi parametric marginal proportional hazards mixture cure is parsimonious model for correlated bees survival data.展开更多
Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to thi...Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm.展开更多
The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is...The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.展开更多
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m...Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.展开更多
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is parti...An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.展开更多
A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectatio...A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.展开更多
In this article,we propose a novel probabilistic framework to improve the accuracy of a weighted majority voting algorithm.In order to assign higher weights to the classifiers which can correctly classify hard-to-clas...In this article,we propose a novel probabilistic framework to improve the accuracy of a weighted majority voting algorithm.In order to assign higher weights to the classifiers which can correctly classify hard-to-classify instances,we introduce the item response theory(IRT)framework to evaluate the samples′difficulty and classifiers′ability simultaneously.We assigned the weights to classifiers based on their abilities.Three models are created with different assumptions suitable for different cases.When making an inference,we keep a balance between the accuracy and complexity.In our experiment,all the base models are constructed by single trees via bootstrap.To explain the models,we illustrate how the IRT ensemble model constructs the classifying boundary.We also compare their performance with other widely used methods and show that our model performs well on 19 datasets.展开更多
Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the comp...Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the complete dynamics of the nonlinear system is represented by using a combination of a normalized exponential function as the probability density function with each of the local models.The parameters of the local ARX models and the exponential functions as well as the unknown piecewise time-varying delays are estimated simultaneously under the framework of the expectation maximization(EM) algorithm.A simulation example is applied to demonstrating the proposed identification method.展开更多
Aiming at the problems of low measurement accuracy,uncertainty and nonlinearity of random noise of the micro electro mechanical system(MEMS)gyroscope,a gyroscope noise estimation and filtering method is proposed,which...Aiming at the problems of low measurement accuracy,uncertainty and nonlinearity of random noise of the micro electro mechanical system(MEMS)gyroscope,a gyroscope noise estimation and filtering method is proposed,which combines expectation maximum(EM)with maximum a posterior(MAP)to form an adpative unscented Kalman filter(UKF),called EMMAP-UKF.According to the MAP estimation principle,a suboptimal unbiased MAP noise statistical estimation model is constructed.Then,EM algorithm is introduced to transform the noise estimation problem into the mathematical expectation maximization problem,which can dynamically adjust the variance of the observed noise.Finally,the estimation and filtering of gyroscope random drift error can be realized.The performance of the gyro noise filtering method is evaluated by Allan variance,and the effectiveness of the method is verified by hardware-in-the-loop simulation.展开更多
In the last years, digital image processing and analysis are used for computer assisted evaluation of semen quality with therapeutic goals or to estimate its fertility by means of spermatozoid motility and morphology....In the last years, digital image processing and analysis are used for computer assisted evaluation of semen quality with therapeutic goals or to estimate its fertility by means of spermatozoid motility and morphology. Sperm morphology is assessed routinely as part of standard laboratory analysis in the diagnosis of human male infertility. Nowadays assessments of sperm morphology are mostly done based on subjective criteria. In order to avoid subjectivity, numerous studies that incorporate image analysis techniques in the assessment of sperm morphology have been proposed. The primary step of all these methods is segmentation of sperm’s parts. In this paper, we have proposed a new method for segmentation of sperm’s Acrosome, Nucleus, Mid-piece and identification of sperm’s tail through some points which are placed on the sperm’s tail, accurately. These estimated points could be used to verify the morphological characteristics of sperm’s tail such as length, shape and etc. At first, sperm’s Acrosome, Nucleus and Mid-piece are segmented through a method based on a Bayesian classifier which utilizes the entropy based expectation–maximization (EM) algorithm and Markov random field (MRF) model to obtain and upgrade the class conditional probability density function (CCPDF) and the apriori probability of each class. Then, a pixel at the end of sperm’s Mid-piece, is selected as an initial point. To find other pixels which are placed on the sperm’s tail, structural similarity index (SSIM) is used in an iterative scheme. In order to stop the algorithm automatically at the end of sperm’s tail, local entropy is estimated and used as a feature to determine if a point is located on the sperm’s tail or not. To compare the performance of the proposed approach with those of previous approaches including manual segmentation, the Accuracy, Sensitivity and Specificity were calculated.展开更多
An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIM...An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.展开更多
An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every...An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every OFDM symbol, both channel estimation and multiuser detection can be simultaneously obtained by iteration. The computer simulation results show this receiver can track channel variations and detect multiuser symbols for different number of users under time-varying multipath channels.展开更多
Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an...Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.展开更多
The continuously updated database of failures and censored data of numerous products has become large, and on some covariates, information regarding the failure times is missing in the database. As the dataset is larg...The continuously updated database of failures and censored data of numerous products has become large, and on some covariates, information regarding the failure times is missing in the database. As the dataset is large and has missing information, the analysis tasks become complicated and a long time is required to execute the programming codes. In such situations, the divide and recombine (D&R) approach, which has a practical computational performance for big data analysis, can be applied. In this study, the D&R approach was applied to analyze the real field data of an automobile component with incomplete information on covariates using the Weibull regression model. Model parameters were estimated using the expectation maximization algorithm. The results of the data analysis and simulation demonstrated that the D&R approach is applicable for analyzing such datasets. Further, the percentiles and reliability functions of the distribution under different covariate conditions were estimated to evaluate the component performance of these covariates. The findings of this study have managerial implications regarding design decisions, safety, and reliability of automobile components.展开更多
Sea-crossing bridges have attracted considerable attention in recent years as an increasing number of projects have been constructed worldwide.Situated in the coastal area,sea-crossing bridges are subjected to a harsh...Sea-crossing bridges have attracted considerable attention in recent years as an increasing number of projects have been constructed worldwide.Situated in the coastal area,sea-crossing bridges are subjected to a harsh environment(e.g.strong winds,possible ship collisions,and tidal waves)and their performance can deteriorate quickly and severely.To enhance safety and serviceability,it is a routine process to conduct vibration tests to identify modal properties(e.g.natural frequencies,damping ratios,and mode shapes)and to monitor their long-term variation for the purpose of early-damage alert.Operational modal analysis(OMA)provides a feasible way to investigate the modal properties even when the cross-sea bridges are in their operation condition.In this study,we focus on the OMA of cable-stayed bridges,because they are usually long-span and flexible to have extremely low natural frequencies.It challenges experimental capability(e.g.instrumentation and budgeting)and modal identification techniques(e.g.low frequency and closely spaced modes).This paper presents a modal survey of a cable-stayed sea-crossing bridge spanning 218 m+620 m+218 m.The bridge is located in the typhoon-prone area of the northwestern Pacific Ocean.Ambient vibration data was collected for 24 h.A Bayesian fast Fourier transform modal identification method incorporating an expectation-maximization algorithm is applied for modal analysis,in which the modal parameters and associated identification uncertainties are both addressed.Nineteen modes,including 15 translational modes and four torsional modes,are identified within the frequency range of[0,2.5 Hz].展开更多
Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quan...Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers.展开更多
In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood i...In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood inference using EM algorithm. Asymptotic properties of the MLEs are obtained and extensive simulations are conducted to assess the performance of parameter estimation. A numerical example is used to illustrate the application.展开更多
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ...Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm.展开更多
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
文摘Classical survival analysis assumes all subjects will experience the event of interest, but in some cases, a portion of the population may never encounter the event. These survival methods further assume independent survival times, which is not valid for honey bees, which live in nests. The study introduces a semi-parametric marginal proportional hazards mixture cure (PHMC) model with exchangeable correlation structure, using generalized estimating equations for survival data analysis. The model was tested on clustered right-censored bees survival data with a cured fraction, where two bee species were subjected to different entomopathogens to test the effect of the entomopathogens on the survival of the bee species. The Expectation-Solution algorithm is used to estimate the parameters. The study notes a weak positive association between cure statuses (ρ1=0.0007) and survival times for uncured bees (ρ2=0.0890), emphasizing their importance. The odds of being uncured for A. mellifera is higher than the odds for species M. ferruginea. The bee species, A. mellifera are more susceptible to entomopathogens icipe 7, icipe 20, and icipe 69. The Cox-Snell residuals show that the proposed semiparametric PH model generally fits the data well as compared to model that assume independent correlation structure. Thus, the semi parametric marginal proportional hazards mixture cure is parsimonious model for correlated bees survival data.
基金Supported by the High Technology Research and Development Programme of China(2006AA12A106)~~
文摘Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm.
基金The National Natural Science Foundation of China(No60572072,60496311)the National High Technology Research and Development Program of China (863Program) (No2006AA01Z264)+1 种基金the National Basic Research Program of China (973Program) (No2007CB310603)the PhD Programs Foundation of Ministry of Educa-tion of China (No20060286016)
文摘The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.
基金Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R826),Princess Nourah Bint Abdulrahman University,Riyadh,Saudi ArabiaNorthern Border University,Saudi Arabia,for supporting this work through project number(NBU-CRP-2025-2933).
文摘Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.
文摘An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.
文摘A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.
文摘In this article,we propose a novel probabilistic framework to improve the accuracy of a weighted majority voting algorithm.In order to assign higher weights to the classifiers which can correctly classify hard-to-classify instances,we introduce the item response theory(IRT)framework to evaluate the samples′difficulty and classifiers′ability simultaneously.We assigned the weights to classifiers based on their abilities.Three models are created with different assumptions suitable for different cases.When making an inference,we keep a balance between the accuracy and complexity.In our experiment,all the base models are constructed by single trees via bootstrap.To explain the models,we illustrate how the IRT ensemble model constructs the classifying boundary.We also compare their performance with other widely used methods and show that our model performs well on 19 datasets.
基金Key Project of the National Nature Science Foundation of China(No.61134009)National Nature Science Foundations of China(Nos.61473077,61473078,61503075)+5 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)Shanghai Pujiang Program,China(No.15PJ1400100)Fundamental Research Funds for the Central Universities,China(Nos.15D110423,2232015D3-32)
文摘Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the complete dynamics of the nonlinear system is represented by using a combination of a normalized exponential function as the probability density function with each of the local models.The parameters of the local ARX models and the exponential functions as well as the unknown piecewise time-varying delays are estimated simultaneously under the framework of the expectation maximization(EM) algorithm.A simulation example is applied to demonstrating the proposed identification method.
基金National Natural Science Foundation of China(No.61863024)Scientific Research Projects of Higher Institutions of Gansu Province(No.2018C-11)+1 种基金Natural Science Foundation of Gansu Province(No.18JR3RA107)Science and Technology Program of Gansu Province(No.18CX3ZA004)。
文摘Aiming at the problems of low measurement accuracy,uncertainty and nonlinearity of random noise of the micro electro mechanical system(MEMS)gyroscope,a gyroscope noise estimation and filtering method is proposed,which combines expectation maximum(EM)with maximum a posterior(MAP)to form an adpative unscented Kalman filter(UKF),called EMMAP-UKF.According to the MAP estimation principle,a suboptimal unbiased MAP noise statistical estimation model is constructed.Then,EM algorithm is introduced to transform the noise estimation problem into the mathematical expectation maximization problem,which can dynamically adjust the variance of the observed noise.Finally,the estimation and filtering of gyroscope random drift error can be realized.The performance of the gyro noise filtering method is evaluated by Allan variance,and the effectiveness of the method is verified by hardware-in-the-loop simulation.
文摘In the last years, digital image processing and analysis are used for computer assisted evaluation of semen quality with therapeutic goals or to estimate its fertility by means of spermatozoid motility and morphology. Sperm morphology is assessed routinely as part of standard laboratory analysis in the diagnosis of human male infertility. Nowadays assessments of sperm morphology are mostly done based on subjective criteria. In order to avoid subjectivity, numerous studies that incorporate image analysis techniques in the assessment of sperm morphology have been proposed. The primary step of all these methods is segmentation of sperm’s parts. In this paper, we have proposed a new method for segmentation of sperm’s Acrosome, Nucleus, Mid-piece and identification of sperm’s tail through some points which are placed on the sperm’s tail, accurately. These estimated points could be used to verify the morphological characteristics of sperm’s tail such as length, shape and etc. At first, sperm’s Acrosome, Nucleus and Mid-piece are segmented through a method based on a Bayesian classifier which utilizes the entropy based expectation–maximization (EM) algorithm and Markov random field (MRF) model to obtain and upgrade the class conditional probability density function (CCPDF) and the apriori probability of each class. Then, a pixel at the end of sperm’s Mid-piece, is selected as an initial point. To find other pixels which are placed on the sperm’s tail, structural similarity index (SSIM) is used in an iterative scheme. In order to stop the algorithm automatically at the end of sperm’s tail, local entropy is estimated and used as a feature to determine if a point is located on the sperm’s tail or not. To compare the performance of the proposed approach with those of previous approaches including manual segmentation, the Accuracy, Sensitivity and Specificity were calculated.
基金Supported by the National Natural Science Foundation of China(6096200161071088)
文摘An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.
基金Supported by the National Natural Science Foundation of China (No. 60272079)
文摘An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every OFDM symbol, both channel estimation and multiuser detection can be simultaneously obtained by iteration. The computer simulation results show this receiver can track channel variations and detect multiuser symbols for different number of users under time-varying multipath channels.
文摘Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.
文摘The continuously updated database of failures and censored data of numerous products has become large, and on some covariates, information regarding the failure times is missing in the database. As the dataset is large and has missing information, the analysis tasks become complicated and a long time is required to execute the programming codes. In such situations, the divide and recombine (D&R) approach, which has a practical computational performance for big data analysis, can be applied. In this study, the D&R approach was applied to analyze the real field data of an automobile component with incomplete information on covariates using the Weibull regression model. Model parameters were estimated using the expectation maximization algorithm. The results of the data analysis and simulation demonstrated that the D&R approach is applicable for analyzing such datasets. Further, the percentiles and reliability functions of the distribution under different covariate conditions were estimated to evaluate the component performance of these covariates. The findings of this study have managerial implications regarding design decisions, safety, and reliability of automobile components.
基金supported by the Start-up Fund from Zhejiang University(No.130000-171207704/018)the National Natural Science Foundation of China(Nos.U1709207,51578506 and 51908494)。
文摘Sea-crossing bridges have attracted considerable attention in recent years as an increasing number of projects have been constructed worldwide.Situated in the coastal area,sea-crossing bridges are subjected to a harsh environment(e.g.strong winds,possible ship collisions,and tidal waves)and their performance can deteriorate quickly and severely.To enhance safety and serviceability,it is a routine process to conduct vibration tests to identify modal properties(e.g.natural frequencies,damping ratios,and mode shapes)and to monitor their long-term variation for the purpose of early-damage alert.Operational modal analysis(OMA)provides a feasible way to investigate the modal properties even when the cross-sea bridges are in their operation condition.In this study,we focus on the OMA of cable-stayed bridges,because they are usually long-span and flexible to have extremely low natural frequencies.It challenges experimental capability(e.g.instrumentation and budgeting)and modal identification techniques(e.g.low frequency and closely spaced modes).This paper presents a modal survey of a cable-stayed sea-crossing bridge spanning 218 m+620 m+218 m.The bridge is located in the typhoon-prone area of the northwestern Pacific Ocean.Ambient vibration data was collected for 24 h.A Bayesian fast Fourier transform modal identification method incorporating an expectation-maximization algorithm is applied for modal analysis,in which the modal parameters and associated identification uncertainties are both addressed.Nineteen modes,including 15 translational modes and four torsional modes,are identified within the frequency range of[0,2.5 Hz].
基金This research was supported by the National Natural Science Foundation of China to Xu Chenwu (39900080, 30270724 and 30370758).
文摘Based on the major gene and polygene mixed inheritance model for multiple correlated quantitative traits, the authors proposed a new joint segregation analysis method of major gene controlling multiple correlated quantitative traits, which include major gene detection and its effect and variation estimation. The effect and variation of major gene are estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm. Major gene is tested with the likelihood ratio (LR) test statistic. Extensive simulation studies showed that joint analysis not only increases the statistical power of major gene detection but also improves the precision and accuracy of major gene effect estimates. An example of the plant height and the number of tiller of F2 population in rice cross Duonieai x Zhonghua 11 was used in the illustration. The results indicated that the genetic difference of these two traits in this cross refers to only one pleiotropic major gene. The additive effect and dominance effect of the major gene are estimated as -21.3 and 40.6 cm on plant height, and 22.7 and -25.3 on number of tiller, respectively. The major gene shows overdominance for plant height and close to complete dominance for number of tillers.
基金Supported by the program for the Fundamental Research Funds for the Central Universities(2014RC042,2015JBM109)
文摘In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood inference using EM algorithm. Asymptotic properties of the MLEs are obtained and extensive simulations are conducted to assess the performance of parameter estimation. A numerical example is used to illustrate the application.
基金the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(HHS19641X003).
文摘Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm.