【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定...【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。展开更多
针对股价预测中存在的不确定性、间断性、随机性和非线性等问题,提出一种TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。首先,采用自适应Tent混沌映射和随机游走策略对算法进行改...针对股价预测中存在的不确定性、间断性、随机性和非线性等问题,提出一种TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。首先,采用自适应Tent混沌映射和随机游走策略对算法进行改进,增强种群多样性和随机性,提高算法局部和全局的寻优能力。其次,使用单峰、多峰和固定维多峰测试函数对TRSSA(Tent Random Walk Sparrow Optimization Algorithm)性能进行了验证,相比于SSA(Sparrow Optimization Algorithm)、AO(Aquila Optimizer)、POA(Pelican Optimization Algorithm)和GWO(Grey Wolf Optimizer),TRSSA算法具有更好的收敛速度、精度和统计性质。最后,由于ELM(Extreme Learning Machine)模型随机生成权重和阈值,降低了预测精度和泛化能力,应用TRSSA算法优化ELM模型的权重和阈值,并用三安光电股票数据集对TRSSA-ELM模型进行了测试。实验结果表明,TRSSA-ELM模型相比于SSA-ELM、ELM、SVR(Support Vector Regression)和GBDT(Gradient Boosting Decision Tree),具有更好的预测精度和稳定性。展开更多
文摘【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。