BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular ...BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications.展开更多
Allium stracheyi(Baker)is widely utilized as a culinary herb and is typically encountered in the higher elevations of the Himalayas.Consequently,it is of great significance to compare the ecological adaptability of th...Allium stracheyi(Baker)is widely utilized as a culinary herb and is typically encountered in the higher elevations of the Himalayas.Consequently,it is of great significance to compare the ecological adaptability of this indigenous species to alternative habitats and its introduction into new environments.This research aims to investigate and gain a comprehensive understanding of A.stracheyi,also known as faran,in Uttarakhand region.We aim to examine how this plant adapts morphologically,physiologically,biochemically,and anatomically to varying elevations,specifically at 550,2200,2460,and 3400 m above mean sea level(m AMSL).This plant demonstrated remarkable morphophysiological adjustments across various aspects of its development,encompassing modified growth patterns,alterations in leaf dimensions,leaf count,etc..Moreover,biochemical adaptations have been identified as pivotal in bolstering the plant resilience to the stress associated with higher elevation.Enzymes like superoxide dismutase(SOD)and peroxidase(POD)exhibited significant responsiveness to elevational variations,contributing to the plant's ability to confront the challenges posed by high-elevational conditions.In terms of anatomy,the plant manifested alterations in its leaf and vascular tissues along the elevational gradient.These modifications involve an increased density of stomata and a greater count of vascular bundles,optimizing gas exchange and adaptation to water stress in frequently encountered harsh environmental conditions at higher elevations.Understanding the adaptive mechanisms employed by A.stracheyi provides valuable insights,especially in forecasting how A.stracheyi might respond to global climate change,particularly in regions affected by habitat fragmentation.展开更多
Satellites in LEO (Low Earth Orbits) are closest to the Earth’s surface, having the smallest coverage area compared to other orbits, depending on altitude and elevation angle, and providing relatively too short visib...Satellites in LEO (Low Earth Orbits) are closest to the Earth’s surface, having the smallest coverage area compared to other orbits, depending on altitude and elevation angle, and providing relatively too short visibility and communication duration, in range of (2 - 15) minutes. Communication duration represents the key performance indicator for LEO satellite communication systems. For longer communication sessions, more satellites must be involved, and the signals must be handed over from one satellite to the next to provide uninterrupted real-time services to the appropriate user or ground station. This leads to the concept and structure of the satellites organized in the constellation. Communication window (visibility window) depends on the designed horizon plane width determined by licensed elevation angle. For the appropriate calculations, a satellite from the Starlink constellation at altitude of 550 km is considered, observed under licensed designed elevations of 40˚ and 25˚. Calculations under two designed elevation levels confirmed the wider horizon and consequently longer communication under the lower elevation.展开更多
Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assist...Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.展开更多
BACKGROUND Primary percutaneous coronary intervention(PCI)is the preferred treatment for ST-segment elevation myocardial infarction(STEMI).However,in patients with high thrombus burden,immediate stenting during PCI ca...BACKGROUND Primary percutaneous coronary intervention(PCI)is the preferred treatment for ST-segment elevation myocardial infarction(STEMI).However,in patients with high thrombus burden,immediate stenting during PCI can lead to poor outcomes due to the risk of thrombus migration and subsequent microvascular occlusion,resulting in no-reflow phenomena.Deferred stenting offers a potential advantage by allowing for the reduction of thrombus load,which may help to minimize the incidence of slow-flow and no-reflow complications.This study explores the effectiveness of a deferred stenting strategy in improving outcomes for STEMI patients.AIM To evaluate the effectiveness and safety of deferred PCI in a real-world setting in acute STEMI patients.METHODS RESULTS Anterior wall myocardial infarction was the predominant type of STEMI in 62%of the selected 55 patients(mean age:54 years;70%males),and diabetes mellitus was the most common risk factor(18.2%),followed by hypertension(16.2%).On the second angiogram of these patients measures of thrombus grade,thrombolysis in myocardial infarction flow grade,myocardial blush grade,and severity of stenosis of culprit lesion were consid-erably improved compared to the first angiogram,and the average culprit artery diameter had increased by 7.8%.Most patients(60%)had an uneventful hospital stay during the second angiogram and an uneventful intrapro-cedural course(85.19%),with slow-flow/no-reflow occurring only in 7.4%of the patients;these patients recovered after taking vasodilator drugs.In 29.3%of patients,the culprit artery was recanalized,preventing unnecessary stent deployment.CONCLUSION Deferred PCI strategy is safe and reduces the thrombus burden,improves thrombolysis in myocardial infarction(TIMI)flow,improves myocardial blush grade,and prevents unwarranted stent deployment.展开更多
Extreme weather events pose an ever-greater threat to people,infrastructure,and nature.Forest ecosystems are highly sensitive to extreme cold events that can disrupt ecosystem functions,especially in montane regions.I...Extreme weather events pose an ever-greater threat to people,infrastructure,and nature.Forest ecosystems are highly sensitive to extreme cold events that can disrupt ecosystem functions,especially in montane regions.Ice storms can be particularly destructive,with rapid ice accretion causing tree branches to break,even snapping or uprooting entire trees.In March 2022,the Shennongjia forest in central China experienced severe ice storm conditions that severely damaged over 230,300ha.We utilized this opportunity to assess the vulnerability of different tree types(coniferous,deciduous,and evergreen broad-leaved)and stand compositions to damage resulting from ice glaze along an elevation gradient from 1,200 to 2,400m a.s.l.Among the 7,144 trees surveyed,10.1%suffered some extent of damage,which was most prolific in the middle elevation zone.While 96.8%of all damage occurred to deciduous broadleaved trees that dominated the forest community,the most severe damage(uprooting and lower trunk breakage)occurred to coniferous trees.The extent and severity of tree damage were moderated by forest composition,with secondary effects of forest structure and slope.Abiotic factors predominantly affected coniferous trees.We emphasize that more research and monitoring are needed to better understand the full impact of extreme weather events on forests,especially as the frequency and intensity of these events increases due to climate change.展开更多
Climate change in High Mountain Asia(HMA)is characterized by elevation dependence,which results in vertical zoning of vegetation distribution.However,few studies have been conducted on the distribution patterns of veg...Climate change in High Mountain Asia(HMA)is characterized by elevation dependence,which results in vertical zoning of vegetation distribution.However,few studies have been conducted on the distribution patterns of vegetation,the response of vegetation to climate change,and the key climatic control factors of vegetation along the elevation gradient in this region.In this study,based on the Normalized Difference Vegetation index(NDVI),we investigated the evolution pattern of vegetation in HMA during 2001-2020 using linear trend and Bayesian Estimator of Abrupt change,Seasonality,and Trend(BEAST)methods.Pearson correlation analysis and partial correlation analysis were used to explore the response relationship between vegetation and climatic factors along the elevation gradient.Path analysis was employed to quantitatively reveal the dominant climatic factors affecting vegetation distribution along the elevation gradient.The results showed that NDVI in HMA increased at a rate of 0.011/10a from 2001 to 2020,and the rate of increase abruptly slowed down after 2017.NDVI showed a fluctuating increase at elevation zones 1-2(<2500 m)and then decreased at elevation zones 3-9(2500-6000 m)with the increase of elevation.NDVI was most sensitive to precipitation and temperature at a 1-month lag.With the increase of elevation,the positive response relationship of NDVI with precipitation gradually weakened,while that of NDVI with temperature was the opposite.The total effect coefficient of precipitation(0.95)on vegetation was larger than that of temperature(0.87),indicating that precipitation is the dominant control factor affecting vegetation growth.Spacially,vegetation growth is jointly influenced by precipitation and temperature,but the influence of precipitation on vegetation growth is dominant at each elevation zone.The results of this study contribute to understanding how the elevation gradient effect influences the response of vegetation to climate change in alpine ecosystems.展开更多
AIM:To investigate the changes in posterior corneal elevation within 6mo after small incision lenticule extraction(SMILE)surgery for myopia and myopic astigmatism in patients with thin corneas.METHODS:A prospective st...AIM:To investigate the changes in posterior corneal elevation within 6mo after small incision lenticule extraction(SMILE)surgery for myopia and myopic astigmatism in patients with thin corneas.METHODS:A prospective study included patients with thin corneas(preoperative thinnest corneal thickness ranging from 480 to 520μm)who underwent SMILE for myopia or myopic astigmatism.Corneal topography and posterior corneal elevation were assessed using Pentacam HR at three time points:preoperatively,1mo,and 6mo postoperatively.The measured parameters included thinnest point elevation(PTE),posterior maximal elevation(PME),posterior central elevation(PCE),and 24 additional reference points.RESULTS:A total of 106 eyes from 106 patients(age range:18-34)were included in the study.Uncorrected distance visual acuity(UDVA)improved significantly,with a mean logMAR value of-0.07±0.06 at the final follow-up visit.Measurements of posterior corneal elevation showed no significant changes in most points,hemispheres,and meridians at 6mo postoperatively.Notably,only two points,ΔE_(2mm-45°)andΔE_(2mm-90°),exhibited statistically significant elevation changes:the elevation ofΔE_(2mm-45°)increased from-2.3±4.99 to-1.0±5.9μm(P=0.0037),and that ofΔE_(2mm-90°)increased from-16±7.53 to-15±7.4μm(P=0.016).However,these changes were within the measurement error range of the Pentacam HR(±5μm in a 5 mm area).CONCLUSION:SMILE surgery is a safe and stable procedure for correcting myopia or myopic astigmatism in patients with thin corneas,as evidenced by the stability of posterior corneal elevation.展开更多
Kounis syndrome(KS)is a rare but clinically significant condition characterized by the simultaneous occurrence of acute coronary syndrome(ACS)and allergic reactions,which can develop in patients with either normal or ...Kounis syndrome(KS)is a rare but clinically significant condition characterized by the simultaneous occurrence of acute coronary syndrome(ACS)and allergic reactions,which can develop in patients with either normal or diseased coronary arteries.[1,2]The condition is typically triggered by various allergens including medications(particularly contrast media),environmental factors,or food exposures,with symptom onset usually occurring within one hour of exposure.展开更多
Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology,because answers to these questions depend on the analytical types,dimensions,and components of beta div...Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology,because answers to these questions depend on the analytical types,dimensions,and components of beta diversity we concerned.To obtain a comprehensive understanding of assemblage dissimilarity and its implications for biodiversity conservation in the Himalayas,we explored the elevational patterns and determinants of beta diversity and its turnover and nestedness components of pairwise and multiple types and taxonomic and phylogenetic dimensions simultaneously.Patterns of beta diversity and their components of different types and dimensions were calculated based on 96 sampling quadrats along an 1800-5400 m elevational gradient.We examined whether and how these patterns differed from random expectations using null models.Furthermore,we used random forest methods to quantify the role of environmental variables representing climate,topography,and human disturbance in determining these patterns.We found that beta diversity and its turnover component,regardless of its types and dimensions,shown a hump-shaped elevational patterns.Both pairwise and multiple phylogenetic beta diversity were remarkably lower than their taxonomic counterpart.These patterns were significantly less than random expectation and were mostly associated with climate variables.In summary,our results suggested that assemblage dissimilarity of seed plants was mostly originate from the replacement of closely related species determined by climate-driven environmental filtering.Accordingly,conservation efforts should better cover elevations with different climate types to maximalize biodiversity conservation,rather than only focus on elevations with highest species richness.Our study demonstrated that comparisons of beta diversity of different types,dimensions,and components could be conductive to consensus on the origin and mechanism of assemblage dissimilarity.展开更多
Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain unc...Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain uncertain in arid mountain ecosystems,where climosequences are quite different from other ecosystems.To address this gap,this study investigated the distribution determinants of microbial communities,C cycling-related genes,and SOC fractions along an elevational gradient(1707–3548 m),with a mean annual precipitation(MAP)range of 38 to 344 mm,on the north slope of the central part of the Kunlun Mountains,China using a metagenomic approach.The results showed that elevation significantly influenced the α-diversity(Shannon index)and composition of microbial communities as well as the C cycling-related genes.The α-diversities of microbial taxa and C cycling-related genes linearly increased with the increase in MAP along the elevational gradient.The elevational patterns of the genes encoding glycoside hydrolases and glycosyl transferases(GTs)were mainly driven by soil electrical conductivity(EC),mean annual temperature(MAT),MAP,and plant diversity.Furthermore,mineral-associated organic C(MAOC),particulate organic C(POC),and their sum generally increased with elevation.However,the MAOC/POC ratio followed a unimodal pattern,suggesting greater stability of the SOC pool in the mid-elevation regions.This unimodal pattern was likely influenced by the abundances of Actinobacteria and the genes encoding GTs and carbohydrate esterases and the threshold effects of soil EC and MAT.In summary,our findings indicate that the distribution patterns of microbial communities and C cycling-related genes along the elevational gradient in an arid ecosystem are distinct from those in the regions with higher MAP,facilitating the prediction of climate change effects on SOC metabolism under more arid conditions.Soil salinity,plant diversity,precipitation,and temperature are the main regulatory factors of microbial C metabolism processes,and they potentially play a central role in mediating SOC pool stability.展开更多
The Longchuan River basin lies within the China Sichuan-Yunnan rhomboid block.The NS-trending Yuanmou-Lvzhi River Fault(YLF),NW-trending Chuxiong-Nanhua Fault(CNF)and Shiyang-Huoshaotun Fault(HSF)are found within the ...The Longchuan River basin lies within the China Sichuan-Yunnan rhomboid block.The NS-trending Yuanmou-Lvzhi River Fault(YLF),NW-trending Chuxiong-Nanhua Fault(CNF)and Shiyang-Huoshaotun Fault(HSF)are found within the basin.The nature of the faults is complex,and the tectonic activity distribution characteristics require further clarification.By extraction from a digital elevation model,the measured longitudinal profile and the geomorphic indices of the Longchuan River,basin showed a stream-length gradient index(SL)of 49–650,hypsometric integral(HI)of 0.27–0.58,drainage basin asymmetry factor(AF)of 3.29–27.47,basin shape index(BS)of 0.87–2.75,valley floor width-to-height ratio(VF)of 0.06–5.40,and evaluation of relative tectonic activity(Iat)of 1.6–2.6.Results showed that river morphology and geomorphological indices in the Longchuan River basin were influenced by tectonic activity,bedrock lithology,climatic conditions,and development time,with tectonic activity playing a dominant role.The relative tectonic activity of the Longchuan River basin was zoned,with a gradual increase in relative tectonic activity from the south to the north.That the slip fault zone primarily controls the tectonic deformation of the Longchuan River basin in central Yunnan and the dynamics of the central Yunnan massif are consistent with the“rigid block lateral extrusion”1model.展开更多
Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa ...Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa farms using cross-sectional data from areas ranging from 190 to 1021 m above sea level which were classified as low, medium, and high elevation in Davao City, considered as the chocolate capital of the Philippines. Using stochastic frontier analysis, the results showed that the cost of inputs per ha and the number of cocoa trees per ha significantly increase yield. Farms at high elevations were less technically efficient, as this entails lower temperatures and increased rainfall, and cocoa farming in those areas and conditions can be more challenging, especially with changes in farming practices, terrain, and distance to markets. Other significant variables were age of cocoa farms, married farmers, and age of the farmers. Older farms may be more developed, farmers who are married benefit from their spouses being able to readily contribute as farm labor, and lastly, older farmers' inefficiency may likely stem from nonadaptation of newer farming practices. With an average technical efficiency of 0.61, 0.63, and 0.26 in low, medium, and high elevation areas, respectively, farmers therefore have an incentive to improve farm practices and consider topographical variations found in high elevation areas. Recommendations for the improvement of technical efficiency of cocoa farms are better connectivity to markets, enhancing farm practices, and continuation and improvement of government programs on cocoa with an added emphasis on research. For farmers in high elevation areas, mitigating solutions such as sustainable agriculture practices and ecolabelling are key to improving efficiency and minimizing the potential negative impact on upland farming systems. Moreover, such adaptation measures may also contribute to sustainability of cocoa farming in high elevation areas.展开更多
Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2...Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.展开更多
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
●AIM:To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction(SMILE)with different myopic diopters.●METHODS:Ninety eyes of 90 patients who underwent SMILE were i...●AIM:To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction(SMILE)with different myopic diopters.●METHODS:Ninety eyes of 90 patients who underwent SMILE were included in this retrospective study.Patients were allocated into three groups based on the preoperative spherical equivalent(SE):low myopia(SE≥-3.00 D),moderate myopia(-3.00 D>SE>-6.00 D)and high myopia(SE≤-6.00 D).Posterior corneal surfaces were measured by a Scheimpflug camera preoperatively and different postoperative times(1wk,1,3,6mo,and 1y).Posterior mean elevation(PME)at 25 predetermined points of 3 concentric circles(2-,4-,and 6-mm diameter)above the best fit sphere was analyzed.●RESULTS:All surgeries were completed uneventfully and no ectasia was found through the observation.The difference of myopia group was significant at the 2-mm ring at 1 and 3mo postoperatively(1mo:P=0.017;3mo:P=0.018).The effect of time onΔPME was statistically significant(2-mm ring:P=0.001;4-mm ring:P<0.001;6-mm ring:P<0.001).The effect of different corneal locations onΔPME was significant except 1wk postoperatively(1mo:P=0.000;3mo:P=0.000;6mo:P=0.001;1y:P=0.001).Posterior corneal stability was linearly correlated with SE,central corneal thickness,ablation depth,residual bed thickness,percent ablation depth and percent stromal bed thickness.●CONCLUSION:The posterior corneal surface changes dynamically after SMILE.No protrusion is observed on the posterior corneal surface in patients with different degrees of myopia within one year after surgery.SMILE has good stability,accuracy,safety and predictability.展开更多
BACKGROUND Myocardial infarction,particularly ST-segment elevation myocardial infarction(STEMI),is a key global mortality cause.Our study investigated predictors of mortality in 96 STEMI patients undergoing primary pe...BACKGROUND Myocardial infarction,particularly ST-segment elevation myocardial infarction(STEMI),is a key global mortality cause.Our study investigated predictors of mortality in 96 STEMI patients undergoing primary percutaneous coronary intervention at Erbil Cardiac Center.Multiple factors were identified influencing in-hospital mortality.Significantly,time from symptom onset to hospital arrival emerged as a decisive factor.Consequently,our study hypothesis is:"Reducing time from symptom onset to hospital arrival significantly improves STEMI prognosis."AIM To determine the key factors influencing mortality rates in STEMI patients.METHODS We studied 96 consecutive STEMI patients undergoing primary percutaneous coronary intervention(PPCI)at the Erbil Cardiac Center.Their clinical histories were compiled,and coronary evaluations were performed via angiography on admission.Data included comorbid conditions,onset of cardiogenic shock,complications during PPCI,and more.Post-discharge,one-month follow-up assessments were completed.Statistical significance was set at P<0.05.RESULTS Our results unearthed several significant findings.The in-hospital and 30-d mortality rates among the 96 STEMI patients were 11.2%and 2.3%respectively.On the investigation of independent predictors of in-hospital mortality,we identified atypical presentation,onset of cardiogenic shock,presence of chronic kidney disease,Thrombolysis In Myocardial Infarction grades 0/1/2,triple vessel disease,ventricular tachycardia/ventricular fibrillation,coronary dissection,and the no-reflow phenomenon.Specifically,the recorded average time from symptom onset to hospital arrival amongst patients who did not survive was significantly longer(6.92±3.86 h)compared to those who survived(3.61±1.67 h),P<0.001.These findings underscore the critical role of timely intervention in improving the survival outcomes of STEMI patients.CONCLUSION Our results affirm that early hospital arrival after symptom onset significantly improves survival rates in STEMI patients,highlighting the critical need for prompt intervention.展开更多
Validation studies of global Digital Elevation Models(DEMs)in the existing literature are limited by the diversity and spread of landscapes,terrain types considered and sparseness of groundtruth.Moreover,there are kno...Validation studies of global Digital Elevation Models(DEMs)in the existing literature are limited by the diversity and spread of landscapes,terrain types considered and sparseness of groundtruth.Moreover,there are knowledge gaps on the accuracy variations in rugged and complex landscapes,and previous studies have often not relied on robust internal and external validation measures.Thus,there is still only partial understanding and limited perspective of the reliability and adequacy of global DEMs for several applications.In this study,we utilize a dense spread of LiDAR groundtruth to assess the vertical accuracies of four medium-resolution,readily available,free-access and global coverage 1 arc-second(30 m)DEMs:NASADEM,ASTER GDEM,Copernicus GLO-30,and ALOS World 3D(AW3D).The assessment is carried out at landscapes spread across Cape Town,Southern Africa(urban/industrial,agricultural,mountain,peninsula and grassland/shrubland)and forested national parks in Gabon,Central Africa(low-relief tropical rainforest and high-relief tropical rainforest).The statistical analysis is based on robust accuracy metrics that cater for normal and non-normal elevation error distribution,and error ranking.In Cape Town,Copernicus DEM generally had the least vertical error with an overall Mean Error(ME)of 0.82 m and Root Mean Square Error(RMSE)of 2.34 m while ASTER DEM had the poorest performance.However,ASTER GDEM and NASADEM performed better in the low-relief and high-relief tropical forests of Gabon.Generally,the DEM errors have a moderate to high positive correlation in forests,and a low to moderate positive correlation in mountains and urban areas.Copernicus DEM showed superior vertical accuracy in forests with less than 40%tree cover,while ASTER and NASADEM performed better in denser forests with tree cover greater than 70%.This study is a robust regional assessment of these global DEMs.展开更多
文摘BACKGROUND The incidence of acute myocardial infarction(AMI)is rising,with cardiac rupture accounting for approximately 2%of deaths in patients with acute ST-segment elevation myocardial infarction(STEMI).Ventricular free wall rupture(FWR)occurs in approximately 2%of AMI patients and is notably rare in patients with non-STEMI.Types of cardiac rupture include left ventricular FWR,ventricular septal rupture,and papillary muscle rupture.The FWR usually leads to acute cardiac tamponade or electromechanical dissociation,where standard resuscitation efforts may not be effective.Ventricular septal rupture and papillary muscle rupture often result in refractory heart failure,with mortality rates over 50%,even with surgical or percutaneous repair options.CASE SUMMARY We present a rare case of an acute non-STEMI patient who suffered sudden FWR causing cardiac tamponade and loss of consciousness immediate before undergoing coronary angiography.Prompt resuscitation and emergency open-heart repair along with coronary artery bypass grafting resulted in successful patient recovery.CONCLUSION This case emphasizes the risks of AMI complications,shares a successful treatment scenario,and discusses measures to prevent such complications.
基金supported by Uttarakhand Council for Biotechnology(grant number UCB/R&D PROJECT/2022/20 dated 06.05.2022).
文摘Allium stracheyi(Baker)is widely utilized as a culinary herb and is typically encountered in the higher elevations of the Himalayas.Consequently,it is of great significance to compare the ecological adaptability of this indigenous species to alternative habitats and its introduction into new environments.This research aims to investigate and gain a comprehensive understanding of A.stracheyi,also known as faran,in Uttarakhand region.We aim to examine how this plant adapts morphologically,physiologically,biochemically,and anatomically to varying elevations,specifically at 550,2200,2460,and 3400 m above mean sea level(m AMSL).This plant demonstrated remarkable morphophysiological adjustments across various aspects of its development,encompassing modified growth patterns,alterations in leaf dimensions,leaf count,etc..Moreover,biochemical adaptations have been identified as pivotal in bolstering the plant resilience to the stress associated with higher elevation.Enzymes like superoxide dismutase(SOD)and peroxidase(POD)exhibited significant responsiveness to elevational variations,contributing to the plant's ability to confront the challenges posed by high-elevational conditions.In terms of anatomy,the plant manifested alterations in its leaf and vascular tissues along the elevational gradient.These modifications involve an increased density of stomata and a greater count of vascular bundles,optimizing gas exchange and adaptation to water stress in frequently encountered harsh environmental conditions at higher elevations.Understanding the adaptive mechanisms employed by A.stracheyi provides valuable insights,especially in forecasting how A.stracheyi might respond to global climate change,particularly in regions affected by habitat fragmentation.
文摘Satellites in LEO (Low Earth Orbits) are closest to the Earth’s surface, having the smallest coverage area compared to other orbits, depending on altitude and elevation angle, and providing relatively too short visibility and communication duration, in range of (2 - 15) minutes. Communication duration represents the key performance indicator for LEO satellite communication systems. For longer communication sessions, more satellites must be involved, and the signals must be handed over from one satellite to the next to provide uninterrupted real-time services to the appropriate user or ground station. This leads to the concept and structure of the satellites organized in the constellation. Communication window (visibility window) depends on the designed horizon plane width determined by licensed elevation angle. For the appropriate calculations, a satellite from the Starlink constellation at altitude of 550 km is considered, observed under licensed designed elevations of 40˚ and 25˚. Calculations under two designed elevation levels confirmed the wider horizon and consequently longer communication under the lower elevation.
基金supported by the Scientific and Technological Innovation Project of SHASG(SCK2022-01)National Key Research and Development Program of China(2016YFC0803109)。
文摘Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.
文摘BACKGROUND Primary percutaneous coronary intervention(PCI)is the preferred treatment for ST-segment elevation myocardial infarction(STEMI).However,in patients with high thrombus burden,immediate stenting during PCI can lead to poor outcomes due to the risk of thrombus migration and subsequent microvascular occlusion,resulting in no-reflow phenomena.Deferred stenting offers a potential advantage by allowing for the reduction of thrombus load,which may help to minimize the incidence of slow-flow and no-reflow complications.This study explores the effectiveness of a deferred stenting strategy in improving outcomes for STEMI patients.AIM To evaluate the effectiveness and safety of deferred PCI in a real-world setting in acute STEMI patients.METHODS RESULTS Anterior wall myocardial infarction was the predominant type of STEMI in 62%of the selected 55 patients(mean age:54 years;70%males),and diabetes mellitus was the most common risk factor(18.2%),followed by hypertension(16.2%).On the second angiogram of these patients measures of thrombus grade,thrombolysis in myocardial infarction flow grade,myocardial blush grade,and severity of stenosis of culprit lesion were consid-erably improved compared to the first angiogram,and the average culprit artery diameter had increased by 7.8%.Most patients(60%)had an uneventful hospital stay during the second angiogram and an uneventful intrapro-cedural course(85.19%),with slow-flow/no-reflow occurring only in 7.4%of the patients;these patients recovered after taking vasodilator drugs.In 29.3%of patients,the culprit artery was recanalized,preventing unnecessary stent deployment.CONCLUSION Deferred PCI strategy is safe and reduces the thrombus burden,improves thrombolysis in myocardial infarction(TIMI)flow,improves myocardial blush grade,and prevents unwarranted stent deployment.
基金supported by the National Natural Science Foundation of China(Nos.31971541 and 32201545).
文摘Extreme weather events pose an ever-greater threat to people,infrastructure,and nature.Forest ecosystems are highly sensitive to extreme cold events that can disrupt ecosystem functions,especially in montane regions.Ice storms can be particularly destructive,with rapid ice accretion causing tree branches to break,even snapping or uprooting entire trees.In March 2022,the Shennongjia forest in central China experienced severe ice storm conditions that severely damaged over 230,300ha.We utilized this opportunity to assess the vulnerability of different tree types(coniferous,deciduous,and evergreen broad-leaved)and stand compositions to damage resulting from ice glaze along an elevation gradient from 1,200 to 2,400m a.s.l.Among the 7,144 trees surveyed,10.1%suffered some extent of damage,which was most prolific in the middle elevation zone.While 96.8%of all damage occurred to deciduous broadleaved trees that dominated the forest community,the most severe damage(uprooting and lower trunk breakage)occurred to coniferous trees.The extent and severity of tree damage were moderated by forest composition,with secondary effects of forest structure and slope.Abiotic factors predominantly affected coniferous trees.We emphasize that more research and monitoring are needed to better understand the full impact of extreme weather events on forests,especially as the frequency and intensity of these events increases due to climate change.
基金supported by the Xinjiang Uygur Autonomous Region Major Scientific and Technological Special Project Research and Demonstration on the Development Model of Ecological Agriculture and Efficient Utilization of Soil and Water Resources in Modern Irrigation Areas(2023A02002-1).
文摘Climate change in High Mountain Asia(HMA)is characterized by elevation dependence,which results in vertical zoning of vegetation distribution.However,few studies have been conducted on the distribution patterns of vegetation,the response of vegetation to climate change,and the key climatic control factors of vegetation along the elevation gradient in this region.In this study,based on the Normalized Difference Vegetation index(NDVI),we investigated the evolution pattern of vegetation in HMA during 2001-2020 using linear trend and Bayesian Estimator of Abrupt change,Seasonality,and Trend(BEAST)methods.Pearson correlation analysis and partial correlation analysis were used to explore the response relationship between vegetation and climatic factors along the elevation gradient.Path analysis was employed to quantitatively reveal the dominant climatic factors affecting vegetation distribution along the elevation gradient.The results showed that NDVI in HMA increased at a rate of 0.011/10a from 2001 to 2020,and the rate of increase abruptly slowed down after 2017.NDVI showed a fluctuating increase at elevation zones 1-2(<2500 m)and then decreased at elevation zones 3-9(2500-6000 m)with the increase of elevation.NDVI was most sensitive to precipitation and temperature at a 1-month lag.With the increase of elevation,the positive response relationship of NDVI with precipitation gradually weakened,while that of NDVI with temperature was the opposite.The total effect coefficient of precipitation(0.95)on vegetation was larger than that of temperature(0.87),indicating that precipitation is the dominant control factor affecting vegetation growth.Spacially,vegetation growth is jointly influenced by precipitation and temperature,but the influence of precipitation on vegetation growth is dominant at each elevation zone.The results of this study contribute to understanding how the elevation gradient effect influences the response of vegetation to climate change in alpine ecosystems.
文摘AIM:To investigate the changes in posterior corneal elevation within 6mo after small incision lenticule extraction(SMILE)surgery for myopia and myopic astigmatism in patients with thin corneas.METHODS:A prospective study included patients with thin corneas(preoperative thinnest corneal thickness ranging from 480 to 520μm)who underwent SMILE for myopia or myopic astigmatism.Corneal topography and posterior corneal elevation were assessed using Pentacam HR at three time points:preoperatively,1mo,and 6mo postoperatively.The measured parameters included thinnest point elevation(PTE),posterior maximal elevation(PME),posterior central elevation(PCE),and 24 additional reference points.RESULTS:A total of 106 eyes from 106 patients(age range:18-34)were included in the study.Uncorrected distance visual acuity(UDVA)improved significantly,with a mean logMAR value of-0.07±0.06 at the final follow-up visit.Measurements of posterior corneal elevation showed no significant changes in most points,hemispheres,and meridians at 6mo postoperatively.Notably,only two points,ΔE_(2mm-45°)andΔE_(2mm-90°),exhibited statistically significant elevation changes:the elevation ofΔE_(2mm-45°)increased from-2.3±4.99 to-1.0±5.9μm(P=0.0037),and that ofΔE_(2mm-90°)increased from-16±7.53 to-15±7.4μm(P=0.016).However,these changes were within the measurement error range of the Pentacam HR(±5μm in a 5 mm area).CONCLUSION:SMILE surgery is a safe and stable procedure for correcting myopia or myopic astigmatism in patients with thin corneas,as evidenced by the stability of posterior corneal elevation.
基金supported by the National Key Research and Development Program of China(No.2022YFB380-7300)the National Natural Science Foundation of China(No.12471455)+2 种基金the Clinical Cohort Construction Program of Peking University Third Hospital(BYSYDL2022005)the Key Clinical Projects of Peking University Third Hospital(BYSYZD2023006)the Innovation&Transfer Fund of Peking University Third Hospital(BYSYZHKC2023-109).
文摘Kounis syndrome(KS)is a rare but clinically significant condition characterized by the simultaneous occurrence of acute coronary syndrome(ACS)and allergic reactions,which can develop in patients with either normal or diseased coronary arteries.[1,2]The condition is typically triggered by various allergens including medications(particularly contrast media),environmental factors,or food exposures,with symptom onset usually occurring within one hour of exposure.
基金supported by the National Natural Science Foundation of China(grant number 31901109)Guangdong Basic and Applied Basic Research Foundation(grant number 2021A1515110744).
文摘Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology,because answers to these questions depend on the analytical types,dimensions,and components of beta diversity we concerned.To obtain a comprehensive understanding of assemblage dissimilarity and its implications for biodiversity conservation in the Himalayas,we explored the elevational patterns and determinants of beta diversity and its turnover and nestedness components of pairwise and multiple types and taxonomic and phylogenetic dimensions simultaneously.Patterns of beta diversity and their components of different types and dimensions were calculated based on 96 sampling quadrats along an 1800-5400 m elevational gradient.We examined whether and how these patterns differed from random expectations using null models.Furthermore,we used random forest methods to quantify the role of environmental variables representing climate,topography,and human disturbance in determining these patterns.We found that beta diversity and its turnover component,regardless of its types and dimensions,shown a hump-shaped elevational patterns.Both pairwise and multiple phylogenetic beta diversity were remarkably lower than their taxonomic counterpart.These patterns were significantly less than random expectation and were mostly associated with climate variables.In summary,our results suggested that assemblage dissimilarity of seed plants was mostly originate from the replacement of closely related species determined by climate-driven environmental filtering.Accordingly,conservation efforts should better cover elevations with different climate types to maximalize biodiversity conservation,rather than only focus on elevations with highest species richness.Our study demonstrated that comparisons of beta diversity of different types,dimensions,and components could be conductive to consensus on the origin and mechanism of assemblage dissimilarity.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(No.2022D01B213)the Key Scientific and Technological Research Projects in the Xinjiang Production and Construction Corps,China(No.2023AB017-02)+1 种基金the West Light Foundation for Young Scholar of Chinese Academy of Sciences(No.2021-XBQNXZ-018)the National Key Research and Development Program of China(No.2022YFF1302504)。
文摘Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain uncertain in arid mountain ecosystems,where climosequences are quite different from other ecosystems.To address this gap,this study investigated the distribution determinants of microbial communities,C cycling-related genes,and SOC fractions along an elevational gradient(1707–3548 m),with a mean annual precipitation(MAP)range of 38 to 344 mm,on the north slope of the central part of the Kunlun Mountains,China using a metagenomic approach.The results showed that elevation significantly influenced the α-diversity(Shannon index)and composition of microbial communities as well as the C cycling-related genes.The α-diversities of microbial taxa and C cycling-related genes linearly increased with the increase in MAP along the elevational gradient.The elevational patterns of the genes encoding glycoside hydrolases and glycosyl transferases(GTs)were mainly driven by soil electrical conductivity(EC),mean annual temperature(MAT),MAP,and plant diversity.Furthermore,mineral-associated organic C(MAOC),particulate organic C(POC),and their sum generally increased with elevation.However,the MAOC/POC ratio followed a unimodal pattern,suggesting greater stability of the SOC pool in the mid-elevation regions.This unimodal pattern was likely influenced by the abundances of Actinobacteria and the genes encoding GTs and carbohydrate esterases and the threshold effects of soil EC and MAT.In summary,our findings indicate that the distribution patterns of microbial communities and C cycling-related genes along the elevational gradient in an arid ecosystem are distinct from those in the regions with higher MAP,facilitating the prediction of climate change effects on SOC metabolism under more arid conditions.Soil salinity,plant diversity,precipitation,and temperature are the main regulatory factors of microbial C metabolism processes,and they potentially play a central role in mediating SOC pool stability.
基金central Yunnan Province(1:50,000)Chuxiong City,central Yunnan Province(Grant/Award Numbers:DD20220987)the National Natural Science Foundation of China(Grant/Award Numbers:41972118).
文摘The Longchuan River basin lies within the China Sichuan-Yunnan rhomboid block.The NS-trending Yuanmou-Lvzhi River Fault(YLF),NW-trending Chuxiong-Nanhua Fault(CNF)and Shiyang-Huoshaotun Fault(HSF)are found within the basin.The nature of the faults is complex,and the tectonic activity distribution characteristics require further clarification.By extraction from a digital elevation model,the measured longitudinal profile and the geomorphic indices of the Longchuan River,basin showed a stream-length gradient index(SL)of 49–650,hypsometric integral(HI)of 0.27–0.58,drainage basin asymmetry factor(AF)of 3.29–27.47,basin shape index(BS)of 0.87–2.75,valley floor width-to-height ratio(VF)of 0.06–5.40,and evaluation of relative tectonic activity(Iat)of 1.6–2.6.Results showed that river morphology and geomorphological indices in the Longchuan River basin were influenced by tectonic activity,bedrock lithology,climatic conditions,and development time,with tectonic activity playing a dominant role.The relative tectonic activity of the Longchuan River basin was zoned,with a gradual increase in relative tectonic activity from the south to the north.That the slip fault zone primarily controls the tectonic deformation of the Longchuan River basin in central Yunnan and the dynamics of the central Yunnan massif are consistent with the“rigid block lateral extrusion”1model.
文摘Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa farms using cross-sectional data from areas ranging from 190 to 1021 m above sea level which were classified as low, medium, and high elevation in Davao City, considered as the chocolate capital of the Philippines. Using stochastic frontier analysis, the results showed that the cost of inputs per ha and the number of cocoa trees per ha significantly increase yield. Farms at high elevations were less technically efficient, as this entails lower temperatures and increased rainfall, and cocoa farming in those areas and conditions can be more challenging, especially with changes in farming practices, terrain, and distance to markets. Other significant variables were age of cocoa farms, married farmers, and age of the farmers. Older farms may be more developed, farmers who are married benefit from their spouses being able to readily contribute as farm labor, and lastly, older farmers' inefficiency may likely stem from nonadaptation of newer farming practices. With an average technical efficiency of 0.61, 0.63, and 0.26 in low, medium, and high elevation areas, respectively, farmers therefore have an incentive to improve farm practices and consider topographical variations found in high elevation areas. Recommendations for the improvement of technical efficiency of cocoa farms are better connectivity to markets, enhancing farm practices, and continuation and improvement of government programs on cocoa with an added emphasis on research. For farmers in high elevation areas, mitigating solutions such as sustainable agriculture practices and ecolabelling are key to improving efficiency and minimizing the potential negative impact on upland farming systems. Moreover, such adaptation measures may also contribute to sustainability of cocoa farming in high elevation areas.
基金supported by the National Natural Science Foundation of China,Nos.81570849,81100931the Natural Science Foundation of Guangdong Province of China,Nos.2015A030313446,2020A1515011413(all to LPC).
文摘Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金Supported by Shandong Provincial Natural Science Foundation(No.ZR2022QH384).
文摘●AIM:To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction(SMILE)with different myopic diopters.●METHODS:Ninety eyes of 90 patients who underwent SMILE were included in this retrospective study.Patients were allocated into three groups based on the preoperative spherical equivalent(SE):low myopia(SE≥-3.00 D),moderate myopia(-3.00 D>SE>-6.00 D)and high myopia(SE≤-6.00 D).Posterior corneal surfaces were measured by a Scheimpflug camera preoperatively and different postoperative times(1wk,1,3,6mo,and 1y).Posterior mean elevation(PME)at 25 predetermined points of 3 concentric circles(2-,4-,and 6-mm diameter)above the best fit sphere was analyzed.●RESULTS:All surgeries were completed uneventfully and no ectasia was found through the observation.The difference of myopia group was significant at the 2-mm ring at 1 and 3mo postoperatively(1mo:P=0.017;3mo:P=0.018).The effect of time onΔPME was statistically significant(2-mm ring:P=0.001;4-mm ring:P<0.001;6-mm ring:P<0.001).The effect of different corneal locations onΔPME was significant except 1wk postoperatively(1mo:P=0.000;3mo:P=0.000;6mo:P=0.001;1y:P=0.001).Posterior corneal stability was linearly correlated with SE,central corneal thickness,ablation depth,residual bed thickness,percent ablation depth and percent stromal bed thickness.●CONCLUSION:The posterior corneal surface changes dynamically after SMILE.No protrusion is observed on the posterior corneal surface in patients with different degrees of myopia within one year after surgery.SMILE has good stability,accuracy,safety and predictability.
文摘BACKGROUND Myocardial infarction,particularly ST-segment elevation myocardial infarction(STEMI),is a key global mortality cause.Our study investigated predictors of mortality in 96 STEMI patients undergoing primary percutaneous coronary intervention at Erbil Cardiac Center.Multiple factors were identified influencing in-hospital mortality.Significantly,time from symptom onset to hospital arrival emerged as a decisive factor.Consequently,our study hypothesis is:"Reducing time from symptom onset to hospital arrival significantly improves STEMI prognosis."AIM To determine the key factors influencing mortality rates in STEMI patients.METHODS We studied 96 consecutive STEMI patients undergoing primary percutaneous coronary intervention(PPCI)at the Erbil Cardiac Center.Their clinical histories were compiled,and coronary evaluations were performed via angiography on admission.Data included comorbid conditions,onset of cardiogenic shock,complications during PPCI,and more.Post-discharge,one-month follow-up assessments were completed.Statistical significance was set at P<0.05.RESULTS Our results unearthed several significant findings.The in-hospital and 30-d mortality rates among the 96 STEMI patients were 11.2%and 2.3%respectively.On the investigation of independent predictors of in-hospital mortality,we identified atypical presentation,onset of cardiogenic shock,presence of chronic kidney disease,Thrombolysis In Myocardial Infarction grades 0/1/2,triple vessel disease,ventricular tachycardia/ventricular fibrillation,coronary dissection,and the no-reflow phenomenon.Specifically,the recorded average time from symptom onset to hospital arrival amongst patients who did not survive was significantly longer(6.92±3.86 h)compared to those who survived(3.61±1.67 h),P<0.001.These findings underscore the critical role of timely intervention in improving the survival outcomes of STEMI patients.CONCLUSION Our results affirm that early hospital arrival after symptom onset significantly improves survival rates in STEMI patients,highlighting the critical need for prompt intervention.
基金supported by the(i)Commonwealth Scholarship Commission and the Foreign,Commonwealth and Development Office in the UK[Grant number NGCN-2021-239](ii)University of Cape Town Postgraduate Funding Office.
文摘Validation studies of global Digital Elevation Models(DEMs)in the existing literature are limited by the diversity and spread of landscapes,terrain types considered and sparseness of groundtruth.Moreover,there are knowledge gaps on the accuracy variations in rugged and complex landscapes,and previous studies have often not relied on robust internal and external validation measures.Thus,there is still only partial understanding and limited perspective of the reliability and adequacy of global DEMs for several applications.In this study,we utilize a dense spread of LiDAR groundtruth to assess the vertical accuracies of four medium-resolution,readily available,free-access and global coverage 1 arc-second(30 m)DEMs:NASADEM,ASTER GDEM,Copernicus GLO-30,and ALOS World 3D(AW3D).The assessment is carried out at landscapes spread across Cape Town,Southern Africa(urban/industrial,agricultural,mountain,peninsula and grassland/shrubland)and forested national parks in Gabon,Central Africa(low-relief tropical rainforest and high-relief tropical rainforest).The statistical analysis is based on robust accuracy metrics that cater for normal and non-normal elevation error distribution,and error ranking.In Cape Town,Copernicus DEM generally had the least vertical error with an overall Mean Error(ME)of 0.82 m and Root Mean Square Error(RMSE)of 2.34 m while ASTER DEM had the poorest performance.However,ASTER GDEM and NASADEM performed better in the low-relief and high-relief tropical forests of Gabon.Generally,the DEM errors have a moderate to high positive correlation in forests,and a low to moderate positive correlation in mountains and urban areas.Copernicus DEM showed superior vertical accuracy in forests with less than 40%tree cover,while ASTER and NASADEM performed better in denser forests with tree cover greater than 70%.This study is a robust regional assessment of these global DEMs.